\begin{equation} x^3 y''' + 6x^2 y'' + 5x y' -5y = x^2 \ln x \label{A} \end{equation}
First we notice that it is Euler equation. We let \begin{equation*} t = \ ln x \end{equation*}
Then Let D denote the operator, which is \begin{equation*} D = \frac{d}{dt} \end{equation*}
Plug in the equation (\ref{A}), we get
\begin{equation*} D(D-1)(D-2)y + 6D(D-1)y + 5Dy -5y = e^{2t} \end{equation*}
Expend it, we can have,
\begin{equation*} D^3y + 3D^2y + Dy - 5y = e^{2t} \end{equation*}
which is,
\begin{equation} y''' + 3y'' + y' - 5y = e^{-2t} \label{B} \end{equation}
Now we have to solve (\ref{B}), which is a constant third order ODE.
First we solve the homogeneous one, which is
\begin{equation} y''' + 3y'' + y' - 5y = 0 \label{C} \end{equation}
The characteristic equation is
\begin{equation*} r^{3} + 3r^2 + r - 5 = (r - 1)(r^2 + 4r + 5) = 0 \end{equation*}
So the solution to (\ref{C}) is
\begin{equation*} y = c_1e^{t} + e^{-2t}(c_2 \cos(t) + c_3 \sin(t)) \end{equation*}
Now it remains to find a particular solution to (\ref{B}).
Since 2 is not a root of the corresponding characteristic polynomial, then we can guess $y=Ae^{2t}$
Plug in (\ref{B}), we have $A = \frac{1}{17}$.
So a general solution to (\ref{B}) is
\begin{equation} y = c_1e^{t} + e^{-2t}(c_2 \cos(t) + c_3 \sin(t)) + \frac{1}{17}e^{2t} \label{D} \end{equation}
Substitute $t = \ lnx $
We have
\begin{equation} y = C_1x + x^{-2}(C_2 \cos(\ ln x) + C_3 \sin(\ ln x)) + \frac{1}{17}x^2 \end{equation}