Alternative solution
\begin{align*}
u(x,y)=&\frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty y\exp \bigl(-\frac{1}{t} (x-y)^2 -\frac{1}{2}y^2\bigr)\,dy=\\
&\frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty y\exp \bigl(-\frac{1}{t} x^2 +\frac{2}{t}xy -(\frac{1}{2}+\frac{1}{t})y^2\bigr)\,dy=\\
&\frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty y\exp \bigl(-\frac{1}{t} x^2 +\frac{2}{t}xy -\frac{t+2}{2t} y^2\bigr)\,dy=\\
&\frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty y\exp \bigl(-\frac{1}{t+2} x^2 -\frac{t+2}{2t} \bigl[y- \frac{2}{(t+2)}\bigr]^2\bigr)\,dy;
\end{align*}
plugging $y= z+\frac{2}{(t+2)}$ we get
\begin{align*}
u(x,y)=&\frac{1}{\sqrt{\pi t}} \int_{-\infty}^\infty \bigr[z+ \frac{2}{(t+2)}\bigr]\exp \bigl(-\frac{1}{t+2} x^2 -\frac{t+2}{2t} z^2\bigr)\,dz;
\end{align*}
the second factor is even by term $z$ and we can skip $z$ in the first factor (integral of odd function would be $0$);
\begin{align*}
u(x,y)=&\frac{2}{\sqrt{\pi t}(t+2)}e^{-x^2/(t+2)} \times \int_{-\infty}^\infty \exp \bigl(-\frac{t+2}{2t} z^2\bigr)\,dz;
\end{align*}
now integral is $\sqrt{2\pi t/(t+2)}$ (plug $z= y\sqrt{t/(t+2)}$) and
\begin{equation*}
u(x,t)= x \Bigl(\frac{2+t}{2}\Bigr)^{-\frac{3}{2}}e^{-x^2 /(2+t)}.
\end{equation*}