1. In Section 6.2, Just below Equation (4) it should be
$(\alpha_0 X'-\alpha X)(0)=(\beta_0 X'+\beta X)(l)=0$ instead of
$(\alpha_0 X'-\alpha X)=(\beta_0 X'+\beta X)(l)=0$
2. In Section 6.3, Equation (2)
http://www.math.toronto.edu/courses/apm346h1/20169/PDE-textbook/Chapter6/S6.3.html#mjx-eqn-eq-6.3.2$\left\{\begin{aligned}
&\partial_x = \cos(\theta)\partial_r - r^{-1}\sin(\theta)\partial_\theta,\\ &\partial_y = \sin(\theta)\partial_r + r^{-1}\cos(\theta)\partial_\theta
\end{aligned}\right.\label{eq-6.3.2} $
The second equation should be $\partial_y$ not $\partial_x$
3. In Section 6.3, Exercise 3
Since $ r \Delta u = \bigr(r u_r\bigl)_r +\bigr(\frac{1}{r}u_\theta\bigl)_\theta$, then
$ \Delta u = r^{-1}\bigr(r u_r\bigl)_r +r^{-1} \bigr(\frac{1}{r}u_\theta\bigl)_\theta $ not $ \Delta u = r^{-1}\bigr(r u_r\bigl)_r + \bigr(\frac{1}{r}u_\theta\bigl)_\theta $
4. In Section 6.4, just below Equation (13), ' was left out. It should be $\sin(n\theta')$
http://www.math.toronto.edu/courses/apm346h1/20169/PDE-textbook/Chapter6/S6.4.html#mjx-eqn-eq-6.4.13$G(r,\theta,\theta'):= \frac{1}{2\pi} \Bigl(1+2\sum_{n=1}^\infty r^n a^{-n}
\bigl(\cos(n\theta)\cos(n\theta')+\sin(n\theta)\sin(n\theta')\bigr) \Bigr)$
5. In Section 6.4, in the derivation of Equation (14)
http://www.math.toronto.edu/courses/apm346h1/20169/PDE-textbook/Chapter6/S6.4.html#mjx-eqn-eq-6.4.14Since $\frac{1}{2\pi} \Bigl(1+2Re \frac{ra^{-1}e^{i(\theta-\theta')}}{1-ra^{-1}e^{i(\theta-\theta')}} \Bigr) = \frac{1}{2\pi} \Bigl(1+2Re \frac{r\cos(\theta-\theta') + ir\sin(\theta-\theta')}{a-r\cos(\theta-\theta') - ir\sin(\theta-\theta')} \Bigr) = \frac{1}{2\pi} \Bigl(1+2\frac{ra\cos(\theta-\theta') - r^2 }{a^2-2ra\cos (\theta-\theta') +r^2} \Bigr)$
So instead of $ G(r,\theta,\theta')= \frac{1}{2\pi}
\Bigl(1+2 \frac{ra \cos(\theta-\theta')}{a^2-2ra\cos (\theta-\theta') +r^2} \Bigr)$
it should be $ G(r,\theta,\theta')= \frac{1}{2\pi} \Bigl(1+2\frac{ra\cos(\theta-\theta') - r^2 }{a^2-2ra\cos (\theta-\theta') +r^2} \Bigr)$
The final equation (14) is right. Just the step before it has typo.