Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - ZYR

Pages: [1]
1
Quiz-4 / TUT0801
« on: October 19, 2019, 12:49:32 AM »
$t^2y" + ty' + y = 0$

Let $x = lnt$, $t >0$, then $\frac{\partial x}{\partial t}  = \frac{\partial }{\partial t}(lnt) = \frac{1}{t}$
Then we have $\frac{\partial y}{\partial t}  = \frac{\partial y}{\partial x} \frac{1}{t}$
$\frac{\partial^2 y}{\partial t^2} = \frac{\partial }{\partial dt}(\frac{\partial y}{\partial x} \frac{1}{t}) = \frac{1}{t^2}(\frac{\partial^2 y}{\partial x} - \frac{\partial y}{\partial x}) $

 When we substitute these to the original equation, we have :
 $t^2 (\frac{1}{t^2}(\frac{\partial^2 y}{\partial x} - \frac{\partial y}{\partial x})) + t\frac{\partial y}{\partial x} \frac{1}{t} + y = 0$
 
 $\frac{\partial^2 y}{\partial x} - \frac{\partial y}{\partial x} + \frac{\partial y}{\partial x} + y = 0$
 
$\frac{\partial^2 y}{\partial x} + y = 0$
Then we have a homogeneous equation, $y''+ y = 0$
$r^2 = -1$, $r = \pm i$, since $\lambda = 0$, $\mu = 1$
 Then the general solution of this differential equation $y(x) = c_1 cos(x) + c_2 sin(x)$
 And then substitute $x = lnt$, we get $y(t) = c_1 cos(lnt) + c_2 sin(lnt)$

2
Quiz-3 / TUT0801
« on: October 11, 2019, 03:22:10 PM »
Verify that the function $y_1$ and $y_2$ are solutions of the given differential equation. Do they constitute a fundamental set of solutions?

    $x^2y''-x(x+2)y' + (x+2)y = 0$, $x >0$, $y_1 = x$, $y_2 = xe^x$
   
$W(y_1, y_2)(x) = \det{\begin{vmatrix}y_1 & y_2\\
   y_1' & y_2'\end{vmatrix}}
 = \det{\begin{vmatrix}x & xe^x \\
   1 & xe^x + e^x\end{vmatrix}}
 = x(xe^x + e^x) - xe^x
 = xe^x( x+1-1)
 = x^2e^x $

 since $x > 0$ and $e^x \neq 0$,  so $W = x^2e^x \neq 0$.
 Therefore, $y_1$ and $y_2$ constitute a fundamental set of solutions.

 
 Verify :
 1)Show $y_1 = x$ is one of the solutions
 We know $y_1 = x$, $y_1' = 1$, $y_1'' = 0$, and then use these substitute in the equation, we have
  LHS: $-x(x+2) + (x+2)x = 0$
  RHS : 0
  since LHS = RHS = 0, so $y_1 = x$ is one of the solutions

 2) Show $y_2 = xe^x$ is one of the solutions
 We know $y_2 = xe^x$, $y_2' = xe^x + e^x$, $y_2'' = e^x(x+2)$, also use thess substitute in the equation, we get
 LHS: $x^2e^x(x+2)-x(x+2)(xe^x + e^x) + (x+2)xe^x =  (x+2)e^x(x^2 -x(x+1) + x ) =  (x+2)e^x(x^2 -x^2 - x + x ) = (x+2)e^x 0 = 0$
 RHS : 0
 since LHS = RHS = 0, so $y_2 = xe^x$ is one of the solutions.

3
Quiz-2 / TUT0801
« on: October 06, 2019, 02:11:39 AM »
   
    $1 + (\frac{x}{y} - \sin(y))y' = 0$
   
    Rewrite the equation, we have: $1dx + (\frac{x}{y} - \sin(y))dy = 0$

    Let $M  = 1$, and $N  = \frac{x}{y}- \sin(y)$

   Then $M_y = 0$, and $N_x= \frac{1}{y}$, where $M_y \neq N_x$
    So, it is not exact.

    Let $R_1 = \frac{M_y - N_x}{M} = \frac{-1}{y}$

    So $\mu = e^{-\int  R_1 dy} = e^{\int  \frac{1}{y} dy} = e^{\ln{y}} = y$

   Then multiply $\mu = y$ on both sides, we have

    $y dx + (x - y\sin(y)) dy = 0$

    and now it is exact since $M_y = 1 = N_x$

    So $\exists\ \psi(x,y)$, such that $\psi_x = M = y$

    $\psi  = \int M dx = \int y dx = yx + h(y)$

    Then, we can get $\psi_y = x + h'(y)$

   Also, we know $\psi_y = N = x - y\sin(y)$, which implies that

    $h'(y) = - y\sin(y)$

   So $h(y) = \int h'(y) dy = \int - y\sin(y) dy$
   
   By integrating by parts, we can know

      $ h(y) = y\cos{y} -\sin{y} + c$
   
  Therefore, we can have

       $\psi = yx + y\cos{y} -\sin{y} = c$
   
   
 

Pages: [1]