Author Topic: Q1-T0101-P1,2  (Read 4327 times)

Jingxuan Zhang

  • Elder Member
  • *****
  • Posts: 106
  • Karma: 20
    • View Profile
Q1-T0101-P1,2
« on: January 25, 2018, 01:10:48 PM »
1. General solution of
$$u_{xy}=e^{x+y}\implies u_{x}=e^{x+y}+\varphi_{x}(x)\implies e^{x+y}+\varphi(x)+\psi(y)$$
2. General solution of
$$u_{t}+(x^2+1) u_{x}=0 \implies C=\arctan(x)-t \implies u=\varphi(\arctan (x)-t)$$
« Last Edit: January 27, 2018, 07:15:47 AM by Victor Ivrii »

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Thursday Session
« Reply #1 on: January 25, 2018, 05:19:36 PM »
Please, write equation of characteristics before integrating it

Ioana Nedelcu

  • Full Member
  • ***
  • Posts: 29
  • Karma: 3
    • View Profile
Re: Thursday Session
« Reply #2 on: January 25, 2018, 10:15:48 PM »
The original integral is $$ \frac{dt}{1} = \frac{dx}{x^2 + 1} = 0 $$