16
HA1 / Re: HA1 problem 4
« on: January 22, 2015, 11:23:04 PM »
I got a very nasty equation for part b
b.
First solve a homogeneous: we get $u(x, y) = \phi (4x^2 +y^2)$ and $C = 4x^2 + y^2$
Then to find the general solution:
\begin{equation}
\frac{d x}{y} = \frac{d x}{x^2} = \frac{d u}{0};\\
\frac{x^2}{y}d x = d u;\\ \text{Since } y = \sqrt{C-4x^2},\\
\frac{x^2}{\sqrt{C-4x^2}}d x=d u\\
\frac{x^2}{\sqrt{C\sqrt{1-\frac{4x^2}{c}}}}dx = du;\\
\end{equation}
We substitute
\begin{equation}
\frac{2x}{\sqrt{c}} = \sin \theta
\end{equation}
Then we get:
\begin{equation}
du=\frac{\frac{\sqrt{c}}{4}\sin^2\theta}{\sqrt{1-\sin^2\theta}}d\sin\theta \frac{\sqrt{2}}{2}\\
du=\frac{\frac{c}{8}\sin^2 \theta }{\cos \theta }d\sin \theta\\
du=\frac{c}{8}\frac{\sin^2 \theta}{\cos \theta} \cos \theta d\theta \\
du=\frac{c}{16}(\theta - \frac{1}{2}\sin 2\theta )\\
\end{equation}
Use trig identity we have $u = \frac{c}{16} \arcsin \frac{2x}{\sqrt{c}} - (\frac{1}{2}(2\times\frac{2x}{\sqrt{c}}\sqrt{1-\frac{4x^2}{c}})$
The general solution is $u = \phi(4x^2+y^2)+ \frac{c}{16} \arcsin \frac{2x}{\sqrt{c}} - (\frac{2x}{\sqrt{c}}\sqrt{1-\frac{4x^2}{c}})$
b.
First solve a homogeneous: we get $u(x, y) = \phi (4x^2 +y^2)$ and $C = 4x^2 + y^2$
Then to find the general solution:
\begin{equation}
\frac{d x}{y} = \frac{d x}{x^2} = \frac{d u}{0};\\
\frac{x^2}{y}d x = d u;\\ \text{Since } y = \sqrt{C-4x^2},\\
\frac{x^2}{\sqrt{C-4x^2}}d x=d u\\
\frac{x^2}{\sqrt{C\sqrt{1-\frac{4x^2}{c}}}}dx = du;\\
\end{equation}
We substitute
\begin{equation}
\frac{2x}{\sqrt{c}} = \sin \theta
\end{equation}
Then we get:
\begin{equation}
du=\frac{\frac{\sqrt{c}}{4}\sin^2\theta}{\sqrt{1-\sin^2\theta}}d\sin\theta \frac{\sqrt{2}}{2}\\
du=\frac{\frac{c}{8}\sin^2 \theta }{\cos \theta }d\sin \theta\\
du=\frac{c}{8}\frac{\sin^2 \theta}{\cos \theta} \cos \theta d\theta \\
du=\frac{c}{16}(\theta - \frac{1}{2}\sin 2\theta )\\
\end{equation}
Use trig identity we have $u = \frac{c}{16} \arcsin \frac{2x}{\sqrt{c}} - (\frac{1}{2}(2\times\frac{2x}{\sqrt{c}}\sqrt{1-\frac{4x^2}{c}})$
The general solution is $u = \phi(4x^2+y^2)+ \frac{c}{16} \arcsin \frac{2x}{\sqrt{c}} - (\frac{2x}{\sqrt{c}}\sqrt{1-\frac{4x^2}{c}})$