$\mathrm{f}\left(\mathrm{z}\right)\mathrm{=}{\mathrm{4z}}^{\mathrm{4}}-3{\mathrm{z}}^{\mathrm{2}}+3$
When $\mathrm{z\ }$is on Real axis, let $\mathrm{z=x+iy}$, then $\mathrm{y=0}$, $\mathrm{z=x}$
$\mathrm{f}\left(\mathrm{z}\right)\mathrm{=4}{\mathrm{x}}^{\mathrm{4}}-3x^2+3\mathrm{=4}{\mathrm{x}}^{\mathrm{4}}-3x^2+3$
${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=}{\mathrm{arctan} \left(\frac{0}{4x^4-3x^2+3}\right)\ }=0$
When $\mathrm{z\ }$is on Imaginary axis, let $\mathrm{z=x+iy}$, then $\mathrm{x}\mathrm{=0}$, $\mathrm{z=}\mathrm{iy}$
$\mathrm{f}\left(\mathrm{z}\right)\mathrm{=4}{\mathrm{(iy)}}^{\mathrm{4}}-3{\left(iy\right)}^2+3\mathrm{=4}{\mathrm{y}}^{\mathrm{4}}+3y^2+3$
${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=}{\mathrm{arctan} \left(\frac{0}{\mathrm{4}{\mathrm{y}}^{\mathrm{4}}+3y^2+3}\right)\ }=0$
Let $\mathrm{z=}{\mathrm{Re}}^{\mathrm{it}}\mathrm{,\ \ 0}\mathrm{\le }\mathrm{t}\mathrm{\le }\frac{\mathrm{\pi }}{2}$
Then $\mathrm{f}\left(\mathrm{z}\right)\mathrm{=4}{({\mathrm{Re}}^{\mathrm{it}})}^{\mathrm{4}}-3{\left({\mathrm{Re}}^{\mathrm{it}}\right)}^2+3\mathrm{=4}{\mathrm{R}}^{\mathrm{4}}e^{i4t}-3R^2e^{i2t}+3$
$\mathrm{arg}\mathrm{}\mathrm{(f}\left(\mathrm{z}\right)\mathrm{)}\mathrm{\cong }\mathrm{4t}$
When $\mathrm{t=0}$, ${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=4*0=0}$
When $\mathrm{t=}\frac{\mathrm{\pi }}{2}$, ${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=4}\frac{\mathrm{\pi }}{2}\mathrm{=2}\mathrm{\pi }$
Then the overall net change in ${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }$ is $\left(\mathrm{2}\mathrm{\pi }\mathrm{-0}\right)\mathrm{+}\mathrm{(}0\mathrm{-}\mathrm{0)}\mathrm{+}\mathrm{(}0\mathrm{-}\mathrm{0)}\mathrm{=2}\mathrm{\pi }$
Then the number of zeros in $\mathrm{f}\left(\mathrm{z}\right)$ is $\frac{1}{2\pi }*\left(2\pi \right)=1$
*Corrected typo $\mathrm{\pi }$ as $\frac{\mathrm{\pi }}{2}$, thank you