Author Topic: MT Problem 5  (Read 8256 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
MT Problem 5
« on: March 06, 2013, 09:10:42 PM »
Solve the system of ordinary differential equations
\begin{equation*}
\left\{
\begin{aligned}
&x'_t=5x-3y,\\
&y'_t=6x-4y.
\end{aligned}
\right.\end{equation*}

Matthew Cristoferi-Paolucci

  • Jr. Member
  • **
  • Posts: 10
  • Karma: 8
    • View Profile
Re: MT Problem 5
« Reply #1 on: March 06, 2013, 09:57:57 PM »
Heres my solution

Jeong Yeon Yook

  • Full Member
  • ***
  • Posts: 20
  • Karma: 8
    • View Profile
Re: MT Problem 5
« Reply #2 on: March 06, 2013, 09:58:23 PM »
solution

Rudolf-Harri Oberg

  • Jr. Member
  • **
  • Posts: 9
  • Karma: 9
    • View Profile
Re: MT Problem 5
« Reply #3 on: March 06, 2013, 10:03:41 PM »
We begin by finding eigenvalues for the systems matrix. We solve $(5-\lambda)(-4-\lambda)+18=\lambda^2-\lambda-2=0$. This yields $\lambda_1=2, \lambda_2=-1$. We now search for eigenvectors.

For $\lambda_1=2$, the eigenvector is $\xi_1=(1,1)$


For $\lambda_2=-1$, the eigenvector is $\xi_2=(1,2)$.

General solution for the system is $Y_G=c_1e^{2t}\xi_1+c_2e^{-t}\xi_2$
« Last Edit: March 06, 2013, 11:38:02 PM by Rudolf-Harri Oberg »

Devangi Vaghela

  • Jr. Member
  • **
  • Posts: 6
  • Karma: 3
    • View Profile
Re: MT Problem 5
« Reply #4 on: March 06, 2013, 10:21:34 PM »
This is my solution