a. correct.
b. We get (some misprints): $\lambda=\beta^2$, $X=A \sinh (\beta x)$ , $A[\beta \cosh (\beta l) + \alpha \sinh(\beta l) ]=0$, so $A\ne 0$ means $\beta^{-1}\tanh (\beta l)=-1/\alpha $. Consider graph $z(\beta)=\beta^{-1}\tanh (\beta l)$ as $\beta>0$. Then
$$
z'= \frac{1}{\beta^2(\cosh (\beta l))^2}[-\sinh (\beta l) \cosh(\beta l) + \beta l]<0
$$
because $\sinh (t)>t$, $\cosh (t)>1$ as $t>0$. Note that $z(+\infty)=0$, $\lim_{\beta\to +0}z(\beta)= l$ and $z(\beta)=-1/\alpha$ for some $\beta>0$ if and only if $-1/\alpha \in (0, l)$.
So answer is: $\alpha < -1/l$.
Also note that when $\alpha <0$ increases $-1/\alpha$ increases and therefore $\beta$ decreases; then $\lambda=-\beta^2$ increases. (not required)
c. $\lambda=-\beta^2$, $X=A \sin (\beta x)$, $\beta^{-1}\tan (\beta l)=-1/\alpha$. Let $z(\beta)=\beta^{-1}\tan (\beta l)$; then
$$
z'= \frac{1}{\beta^2(\cos (\beta l))^2}[-\sin (\beta l) \cos (\beta l) + \beta l]>0
$$
because $|\sin (t)|<t$, $|\cos (t)|\le 1$ as $t>0$. Also note that on each interval $((n-\frac{1}{2})\frac{\pi}, {l}, (n+\frac{1}{2})\frac{\pi}{l})$ this function runs from $-\infty$ to $+\infty$ thus intersecting $-1/\frac{\alpha}$ exactly once, so we have $\beta_n$ on this interval.
d. Note that as $\alpha $ increases $-1/\alpha$ increases and therefore $\beta$ also increases; then $\lambda=\beta^2$ increases.