Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
APM346-2012
»
APM346 Math
»
Term Test 2
»
TT2--Problem 4
« previous
next »
Print
Pages: [
1
]
Author
Topic: TT2--Problem 4 (Read 7862 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
TT2--Problem 4
«
on:
November 15, 2012, 08:23:51 PM »
Find Fourier transform of the function
\begin{equation*}
f(x)= \left\{\begin{aligned}
&1-|x| &&|x|<1\\
&0 &&|x|>1.
\end{aligned}\right.
\end{equation*}
and write this function $f(x)$ as a Fourier integral.
Post after 22:30
Logged
Ian Kivlichan
Sr. Member
Posts: 51
Karma: 17
Re: TT2--Problem 4
«
Reply #1 on:
November 15, 2012, 11:46:03 PM »
Hopeful solution attached!
Logged
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Re: TT2--Problem 4
«
Reply #2 on:
November 16, 2012, 07:02:54 AM »
Actually since $f$ is an even function so is $\hat{f}$ and $f(x)$ could be written as $\cos$-Fourier integral.
BTW plugging $x=0$ we can calculate $\int_0^\infty \frac{1-\cos(\omega)}{\omega^2}\,d\omega$.
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
APM346-2012
»
APM346 Math
»
Term Test 2
»
TT2--Problem 4