### Author Topic: Q6 TUT 0101  (Read 1892 times)

#### Victor Ivrii

• Elder Member
• Posts: 2563
• Karma: 0
##### Q6 TUT 0101
« on: November 17, 2018, 03:49:22 PM »
The coefficient matrix contains a parameter $\alpha$.

(a)  Determine the eigenvalues in terms of $\alpha$.
(b)  Find the critical value or values of  $\alpha$  where the qualitative nature of the phase portrait for the system changes.
(c) Draw a phase portrait for a value of  $\alpha$ slightly below, and for another value slightly above, each critical value.
$$\mathbf{x}' =\begin{pmatrix} \frac{5}{4} &\frac{3}{4}\\ \alpha & \frac{5}{4} \end{pmatrix}\mathbf{x}.$$
« Last Edit: November 17, 2018, 04:02:05 PM by Victor Ivrii »

#### Qing Zong

• Jr. Member
• Posts: 7
• Karma: 0
##### Re: Q6 TUT 0101
« Reply #1 on: November 17, 2018, 04:55:24 PM »
This is my solution

#### Jiacheng Ge

• Full Member
• Posts: 19
• Karma: 8
##### Re: Q6 TUT 0101
« Reply #2 on: November 18, 2018, 12:57:01 PM »
My answer is different.
« Last Edit: November 18, 2018, 01:04:09 PM by Jiacheng Ge »