Author Topic: TUT 0702 QUIZ4  (Read 4708 times)

Kunpeng Liu

  • Jr. Member
  • **
  • Posts: 9
  • Karma: 0
    • View Profile
TUT 0702 QUIZ4
« on: October 18, 2019, 02:00:00 PM »
$$Question:\, \, Find \, \, the\, \,  general \, \, solution\, \,  of\, \,  the\, \,  given\, \,  differential\, \,  equation:{y}''+2{y}'+2y=0\\\\\\To \, \, begin\, \,  with,let\, \, y=e^{rt},{y}'=re^{rt},{y}''=r^2e^{rt}\\\\\\\\Then, r^2+2r+2=0, \, \, r1=\frac{-2+2i}{2}=-1+i,\, \, r2=\frac{-2-2i}{2}=-1-i\\\\\\\\Substitute \, \, \lambda =-1\, \, and \, \, \mu =1\, \, in \, \,\, \,  y=C1e^{\lambda t}cos(\mu t)+C2e^{\lambda t}sin(\mu t):\\\\\\\\y=C1e^{-t}cost(t)+C2e^{-t}sin(t)$$