Author Topic: TUT0402 quiz2  (Read 3935 times)

Junhong Zhou

  • Newbie
  • *
  • Posts: 4
  • Karma: 0
    • View Profile
TUT0402 quiz2
« on: October 04, 2019, 02:00:07 PM »
Question: Find an integrating factor and solve the given equation.

    M(x,y)=3x^2y+2xy+y^3 &\implies M_y=3x^2+2x+3y^2\notag\\
    N(x,y)=x^2+y^2 &\implies N_x=2x\notag

Since $M_y \neq N_x$, this implies the given differential equation is not exact, so we need to find $\mu(x,y)$ such that the equation $\mu(3x^2+2xy+y^3)+\mu(x^2+y^2)y'=0$ is exact.


then we can write $\mu$:
$$\mu(x,y)=e^{\int R(x)dx}=e^{\int 3 dx}=e^{3x}$$

multiply the given differential equation by $\mu$:
    \mu(3x^2y+2xy+y^3)+\mu(x^2+y^2)y' &= 0\notag\\
    e^{3x}(3x^2y+2xy+y^3)+e^{3x}(x^2+y^2)y' &= 0\notag

Which is now an exact differential equation, this implies there exist $\varphi(x,y)$ such that $\varphi_x=M$ and $\varphi_y=N$.
    \varphi_y(x,y)=e^{3x}(x^2+y^2) &\implies \varphi(x,y)
    =\int e^{3x}(x^2+y^2)dy\notag\\
    &\implies \varphi(x,y)
    = e^{3x}x^2y+\frac{1}{3}e^{3x}y^3+f(x)\notag
$$\varphi_x(x,y)=2e^{3x}xy+3e^{3x}x^2y+e^{3x}y^3+f'(x) \implies f'(x)=0 \implies f(x)=C\notag$$