Author Topic: Thanksgiving bonus 2  (Read 5351 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Thanksgiving bonus 2
« on: October 05, 2018, 05:33:08 PM »
If we want to find a second order equations with the fundamental system of solutions $\{y_1(x),y_2(x)\}$ s.t. $W(y_1,y_2):=\left|\begin{matrix} y_1 & y_2\\ y_1' &y_2'\end{matrix}\right|\ne 0$, we write
$$
W(y,y_1,y_2):=\left|\begin{matrix}y & y_1 & y_2\\ y' &y_1' &y_2'\\ y'' &y_1'' &y_2'' \end{matrix}\right|= 0.$$

Problem.
Find a second order equation with the fundamental system of solutions $\{y_1(x),y_2(x)\}=\displaystyle{\{\frac{1}{x+1},\frac{x}{x+1}\}}$.
« Last Edit: October 05, 2018, 10:04:20 PM by Victor Ivrii »

Yiwei Han

  • Newbie
  • *
  • Posts: 3
  • Karma: 5
    • View Profile
Re: Thanksgiving bonus 2
« Reply #1 on: October 05, 2018, 10:20:48 PM »
Have a good holiday!!

Yiwei Han

  • Newbie
  • *
  • Posts: 3
  • Karma: 5
    • View Profile
Re: Thanksgiving bonus 2
« Reply #2 on: October 06, 2018, 12:14:17 AM »
This is the corrected answer. Happy Thanksgiving!!

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Thanksgiving bonus 2
« Reply #3 on: October 06, 2018, 01:18:56 AM »
Full credit given, but was not a very good problem: one can replace $y_2$ by $y_1+y_2=1$ coefficient at $y$ must be $0$.