Find general and singular solutions to:
$2y-4xy'-\ln(y')=0$
1. We transform the equation into the form:
$y=x\cdot 2y'+\frac{1}{2}\ln(y')$
We plug $p=y'$ and differentiate the equation, we get:
$pdx = 2pdx+2x\cdot dp+\frac{1}{2}\frac{1}{p}\cdot dp$
Then:
$p\frac{dx}{dp}=2p\frac{dx}{dp}+2x+\frac{1}{2p}$
$-px'-2x=\frac{1}{2p}$
$x'+\frac{2}{p}x=-\frac{1}{2p^2}$
Then $p(p) = \frac{2}{p}$, $u(p)=e^{2\int \frac{1}{p}dp} = e^{2lnp}=p^2$,
Multiply both sides with integrating factor $u(p) = p^2$ and we get:
$p^2x'+2px=-\frac{1}{2}$
$(p^2x)'=-\frac{1}{2}$
$p^2x=-\int \frac{1}{2}dp$
$p^2x=-\frac{1}{2}p+C$
$x=-\frac{1}{2p}+\frac{C}{p^2}$
Then the solution in the parametric form is: $\begin{cases}x=-\frac{1}{2p} + \frac{C}{p^2}\\ y=x\cdot 2p + \frac{1}{2}\ln p\end{cases}$
2. I am confused about the singular solution to this question. Since $\varphi(c) = 2c$ and $\varphi(c) -c=0 \implies 2c-c=0\implies c=0$.
However, for $\psi(c)$, since the domain of $\ln x$ is $x>0$. Then $\ln c=\ln 0$ will have no definition. Therefore, how am I supposed to solve the singular solution to the equation $2y-4xy'-\ln(y')=0$?