$r^3 - 2r^2 + 4r - 8 = 0$
$(r-2)r^2 + 4(r-2) = 0$
$(r-2)(r^2+4) = 0$
r =2, r =$\pm$2i
Then
$y_c(t) = c_1e^{2t} + c_2\cos2t + c_3\sin2t$
$y^{'''} - 2y^{''} + 4y' - 8y = 16e^{2t}$
$y_p(t) = Ae^{2t} = Ate^{2t}$
$(Ate^{2t})^{'''} - 2(Ate^{2t})^{''} + 4(Ate^{2t})' - 8(Ate^{2t}) = 16e^{2t}$
Then we get A = 2
Then $y_p(t) = 2e^{2t}$
$y^{'''} - 2y^{''} + 4y' - 8y = 30\cos t$
$y_p(t) = B\cos t + C\sin t$
$(B\cos t + C\sin t)^{'''} - 2(B\cos t + C\sin t)^{''} + 4(B\cos t + C\sin t)' - 8(B\cos t + C\sin t) = 30\cos t$
Then we get B=-4 and C=2
$y_p(t) = 2 \sin t - 4 \cos t$
Thus, $y(t) = c_1e^{2t} +c_2\cos(2t)+c_3\sin(2t)+2te^t+2\sin t - 4\cos t$