### Author Topic: Term Test 2 sample P5  (Read 3551 times)

#### Victor Ivrii

• Elder Member
• Posts: 2563
• Karma: 0
##### Term Test 2 sample P5
« on: October 30, 2018, 05:28:19 AM »
Consider $$f(z)= \frac{16}{(z^2-16)(z^2+25)}$$ and decompose it into Laurent's series converging

(a) As $|z|<4$;

(b) As $4<|z|<5$;

(c) As $|z|>5$.

#### Shengying Yang

• Jr. Member
• Posts: 10
• Karma: 17
##### Re: Term Test 2 sample P5
« Reply #1 on: November 03, 2018, 06:48:33 PM »
$$f(z)=\frac{16}{(z^2-16)(z^2+25)}$$
By doing partial fraction, we can get
$$f(z)=\frac{2}{41}\frac{1}{z-1}-\frac{2}{41}\frac{1}{z+4}-\frac{16}{41}\frac{1}{10i}(\frac{1}{z-5i}-\frac{1}{z+5i})$$
a) as $|z|<4,$
$$f(z)=\frac{2}{41}\frac{(-1)}{4}\frac{1}{1-\frac{z}{4}}-\frac{2}{41}\frac{1}{4}\frac{1}{1-\frac{(-z)}{4}}+\frac{16}{41}\frac{1}{10i}\frac{1}{5i}(\frac{1}{1-\frac{z}{5i}}+\frac{1}{1-\frac{-z}{5i}})$$
$$∴f(z)=\frac{-2}{164}(\sum_{n=0}^{\infty}(\frac{z}{4})^n+\sum_{n=0}^{\infty}(\frac{-z}{4})^n)-\frac{16}{2050}(\sum_{n=0}^{\infty}(\frac{z}{5i})^n+\sum_{n=0}^{\infty}(\frac{-z}{5i})^n)$$
Similarily,
b)as $<4|z|<5$,
$$f(z)=\frac{2}{41z}(\sum_{n=0}^{\infty}(\frac{4}{z})^n-\sum_{n=0}^{\infty}(\frac{-4}{z})^n)-\frac{16}{2050}(\sum_{n=0}^{\infty}(\frac{z}{5i})^n+\sum_{n=0}^{\infty}(\frac{-z}{5i})^n)$$
c)as $|z|>5$,
$$f(z)=\frac{2}{41z}(\sum_{n=0}^{\infty}(\frac{4}{z})^n-\sum_{n=0}^{\infty}(\frac{-4}{z})^n)-\frac{16}{410iz}(\sum_{n=0}^{\infty}(\frac{5i}{z})^n-\sum_{n=0}^{\infty}(\frac{-5i}{z})^n)$$

#### Victor Ivrii

• Elder Member
• Posts: 2563
• Karma: 0
##### Re: Term Test 2 sample P5
« Reply #2 on: November 04, 2018, 03:30:44 PM »
1) You are definitely going more complicated way : one could replace $z^2$ by $w$, make a simpler decomposition and then plug $w=z^2$.

2) One need to write
f(z)=\left\{\begin{aligned} &\sum_{n=0}^\infty A_n z^n && |z|<4,\\ &\sum_{n=0}^\infty A_n z^n+\sum_{n=-\infty}^{-1} A_n z^{n},&& 4<|z|<5,\\ &\sum_{n=-\infty}^{0} A_n z^{n}&& |z|>5; \end{aligned}\right.
thus you need to collect all terms with the same power of $z$ to get a complete mark. And due to 1) it will be simpler with $z^{2n}$
(karma assigned)
« Last Edit: November 05, 2018, 07:22:53 PM by Victor Ivrii »

#### Ye Jin

• Full Member
• Posts: 17
• Karma: 9
##### Re: Term Test 2 sample P5
« Reply #3 on: November 08, 2018, 12:19:47 PM »
Let $w=z^2$, then $f(w)=\frac{16}{(w-16)(w+25)}$

$=\frac{16}{41}\frac{1}{w-16}-\frac{16}{41}\frac{1}{w+25}$

plug $w=z^2$, $f(z)=\frac{16}{41}\frac{1}{z^2-16}-\frac{16}{41}\frac{1}{z^2+25}$

(a) $|z|<4 ,so |w|<16$

$f(w)=\frac{1}{41} \frac{1}{-1+\frac{w}{16}}-\frac{16}{41\cdot25} \frac{1}{1-\frac{-w}{25}}$

$=\frac{-1}{41}\sum_{n=0}^{\infty}(\frac{w}{41})^n-\frac{16}{41\cdot25}\sum_{n=0}^{\infty}(\frac{-w}{25})^n$

$=\sum_{n=0}^{\infty}(\frac{-1}{41\cdot16^n}-\frac{(-1)^n16}{41\cdot25^{n+1}}\,){w}^n$

$f(z)=\sum_{n=0}^{\infty}(\frac{-1}{41\cdot16^n}-\frac{(-1)^n16}{41\cdot25^{n+1}}\,)z^{2n}$

(b) $4<|z|<5 ,so 16<|w|<25$

$f(w)=\frac{16}{41w} \frac{1}{1-\frac{16}{w}}-\frac{16}{41\cdot25} \frac{1}{1-\frac{-w}{25}}$

$=\frac{16}{41w}\sum_{n=0}^{\infty}(\frac{16}{w})^n-\frac{16}{41\cdot25} \sum_{n=0}^{\infty}(\frac{-w}{25})^n$

$=\sum_{n=0}^{\infty}\frac{16^{n+1}}{41w^{n+1}}- (\frac{(-1)^n16}{41\cdot25^{n+1}}\,){w}^n$

$= \sum_{n=1}^{\infty} \frac{16^n}{41w^n}- (\frac{(-1)^n16}{41\cdot25^{n+1}}\,){w}^n$

$=\sum_{n=-\infty}^{-1} \frac{16^{-n}}{41}w^n-\sum_{n=0}^{\infty}(\frac{(-1)^n16}{41\cdot25^{n+1}}\,){w}^n$

$f(z)=\sum_{n=-\infty}^{-1} \frac{16^{-n}}{41}z^{2n}-\sum_{n=0}^{\infty}(\frac{(-1)^n16}{41\cdot25^{n+1}}\,)z^{2n}$

(c) $5<|z| ,so 25<|w|$

$f(w)=\frac{16}{41w} \frac{1}{1-\frac{16}{w}}-\frac{16}{41w} \frac{1}{1-\frac{-25}{w}}$

$=\frac{16}{41w}\sum_{n=0}^{\infty}(\frac{16}{w})^n- \sum_{n=0}^{\infty} \frac{16}{41w}(\frac{-25}{w})^n$

$= \sum_{n=0}^{\infty}\frac{16^{n+1}}{41w^{n+1}}-\sum_{n=0}^{\infty} \frac{16(-25)^n}{41w^{n+1}}$

$= \sum_{n=0}^{\infty} (\frac{16^{n+1}}{41}-\frac{16(-25)^n}{41})w^{-n-1}$

$= \sum_{n=-\infty}^{0} (\frac{16^{-n+1}}{41}-\frac{16(-25)^{-n}}{41})w^{n-1}$

$f(z)= \sum_{n=-\infty}^{-1} (\frac{16^{-n+1}}{41}-\frac{16(-25)^{-n}}{41})z^{2n-2}$

« Last Edit: November 09, 2018, 10:27:34 AM by Ye Jin »

#### Victor Ivrii

• Elder Member
• Posts: 2563
• Karma: 0
##### Re: Term Test 2 sample P5
« Reply #4 on: November 08, 2018, 02:53:40 PM »
Ye, you need to check limits and powers. Obviously, as $|z|>5$ the highest power of $z$ is $-4$ and the rest are lesser

#### Ye Jin

• Full Member
• Posts: 17
• Karma: 9
##### Re: Term Test 2 sample P5
« Reply #5 on: November 09, 2018, 09:46:03 AM »
I have modified but for |z|>5, the largest power I got is -2.
« Last Edit: November 09, 2018, 09:47:57 AM by Ye Jin »

#### Victor Ivrii

• Elder Member
• Posts: 2563
• Karma: 0
##### Re: Term Test 2 sample P5
« Reply #6 on: November 09, 2018, 10:04:59 AM »
Calculate the coefficient at $z^{-2}$. The answer is rather obvious because $f(z)$ decays as $z^{-4}$ as $z\to \infty$

#### Ye Jin

• Full Member
• Posts: 17
• Karma: 9
##### Re: Term Test 2 sample P5
« Reply #7 on: November 09, 2018, 10:30:36 AM »
Calculate the coefficient at $z^{-2}$. The answer is rather obvious because $f(z)$ decays as $z^{-4}$ as $z\to \infty$
So I should start from n=-1 because the coefficient is 0 when n=0?

#### Victor Ivrii

• Elder Member
• Posts: 2563
• Karma: 0
##### Re: Term Test 2 sample P5
« Reply #8 on: November 09, 2018, 10:39:24 AM »
Calculate the coefficient at $z^{-2}$. The answer is rather obvious because $f(z)$ decays as $z^{-4}$ as $z\to \infty$
So I should start from n=-1 because the coefficient is 0 when n=0?
While starting from the term with $0$ coefficient is not technically an error, it is definitely a bad bad practice.

#### Ye Jin

• Full Member
• Posts: 17
• Karma: 9
##### Re: Term Test 2 sample P5
« Reply #9 on: November 09, 2018, 10:56:09 AM »
Calculate the coefficient at $z^{-2}$. The answer is rather obvious because $f(z)$ decays as $z^{-4}$ as $z\to \infty$
So I should start from n=-1 because the coefficient is 0 when n=0?
While starting from the term with $0$ coefficient is not technically an error, it is definitely a bad bad practice.
And now is there any other mistake I have made?