Author Topic: 2.2 Q11  (Read 1472 times)

Nikki Mai

  • Jr. Member
  • **
  • Posts: 12
  • Karma: 1
    • View Profile
2.2 Q11
« on: November 19, 2018, 09:37:13 PM »
Can anyone help me with 2.2 question11?
I am not sure how to solve with the hint.

Ye Jin

  • Full Member
  • ***
  • Posts: 17
  • Karma: 9
    • View Profile
Re: 2.2 Q11
« Reply #1 on: November 19, 2018, 09:59:15 PM »
    $\frac{1}{4-z}=\frac{1}{4}\frac{1}{1-\frac{z}{4}}$
    $\frac{1}{4-z}=\frac{1}{4}\sum_{n=0}^{\infty}(\frac{z}{4})^n$
   
   Take derivatives on both sides, then
    $\frac{1}{(4-z)^2}=\sum_{n=1}^{\infty}\frac{1}{4^{n+1}}nz^{n-1}$  (Here, use the hint)
   
    $\frac {z^2}{(4-z)^2}=\sum_{n=1}^{\infty}\frac{1}{4^{n+1}}nz^{n+1}$
             
              $=\sum_{n=1}^{\infty}n(\frac{z}{4})^{n+1}$


OK Fiexd it.
« Last Edit: November 20, 2018, 02:32:39 PM by Ye Jin »

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: 2.2 Q11
« Reply #2 on: November 20, 2018, 06:24:15 AM »
$\frac{1}{4^{n+1}}$ cannot be outside of the sum