\begin{align*}
f(z)&=\frac{sin(\pi z)}{\pi z^3}\\
sin(\pi z^3)&=0\\
\Rightarrow \pi z^3&=k\pi,k\in Z\\
\Rightarrow z^3=k&z_0=\sqrt[3]{k}
\left\{
\begin{array}{lr}
k\ is\ a\ perfect\ cubic,\sqrt[3]{k}\in {z-\{0\}}& \\
k\ is\ not\ a\ perfect\ cube& \\
k=0, &
\end{array}
\right.
\end{align*}
case1:
\begin{align*}
f(z)&=\underbrace{sin(\pi z)}_{g(z)}\underbrace{\frac{1}{\pi z^3}}_{h(z)}\\
\sqrt[3]{k}&=Z\Rightarrow z\in Z\Rightarrow g(\sqrt[3]{k})=0\\
g'(z)&=\pi cos(\pi z)\Rightarrow g'(\sqrt[3]{k})=\pm \pi\neq0
\end{align*}
$\Rightarrow$ g(z) has a zero of order 1 at $\sqrt[3]{k}$
\begin{align*}
\frac{1}{h(z)}&=sin(\pi z^3)\\
\frac{d}{dz}sin(\pi z^3)&=cos(\pi z^3)3\pi z^2
\end{align*}
$cos(\pi k)3\pi k^{\frac{2}{3}}\neq 0$
$\Rightarrow$ h(z) has a pole of order 1 at $\sqrt[3]{k}$
Thus, f(z)has a removable singularity at $z=\sqrt[3]{k}\in Z-\{0\}$.
case2:
\begin{align*}
\sqrt[3]{k}\notin Z \Rightarrow g(z_0)\neq0
\end{align*}
h(z) has a pole of order 1 at $\sqrt[3]{k}$ as shown in case1
Thus, f(z) has a pole of order 1 at$z=\sqrt[3]{k} \notin Z$.
case3:
$g(0)=0,g'(0)\neq 0,\Rightarrow g(z)$ has zero od order 1 at z=0
$\frac{d}{dz}sin(\pi z^3)=xos(\pi z^3)3\pi z^2$
$\frac{d^2}{dz^2}sin(\pi z^3)=cos(\pi z^3)6\pi z+3\pi z^2(-3z^2\pi sin(\pi z^3))$
$\frac{d^3}{dz^3}sin(\pi z^3)=cos(\pi z^3)6\pi +6\pi z(-3\pi z^2sin(\pi z^3)+\cdots$
Note $\frac{d^3}{sz^3}|_{z=0}\neq0\Rightarrow h(z)$ has pole of order 3 at z=0
Thus f(z) has pole of order 2 at zero.