### Author Topic: Q6 TUT 0401  (Read 3811 times)

#### Victor Ivrii ##### Q6 TUT 0401
« on: November 17, 2018, 03:54:02 PM »
The coefficient matrix contains a parameter $\alpha$.

(a) Determine the eigenvalues in terms of $\alpha$.
(b) Find the critical value or values of  $\alpha$  where the qualitative nature of the phase portrait for
the system changes.
(c) Draw a phase portrait for a value of  $\alpha$ slightly below, and for another value slightly above,
each critical value.

$$\mathbf{x}' =\begin{pmatrix} \alpha &1\\ -1 &\alpha \end{pmatrix}\mathbf{x}.$$

#### Guanyao Liang

• Jr. Member
•  • Posts: 13
• Karma: 12 ##### Re: Q6 TUT 0401
« Reply #1 on: November 17, 2018, 03:54:53 PM »

#### Jingze Wang

• Full Member
•   • Posts: 30
• Karma: 25 ##### Re: Q6 TUT 0401
« Reply #2 on: November 17, 2018, 03:56:11 PM »
First, try to find the eigenvalues with respect to the parameter

$A=\begin{bmatrix} \alpha&1\\ -1&\alpha\\ \end{bmatrix}$

$det(A-rI)=(\alpha-r)(\alpha-r)+1=0$

$r^2-2{\alpha}r+\alpha^2+1=0$

$r=\frac{2\alpha\pm\sqrt{-4}}{2}$

$r=\alpha\pm2i$       $\color{red}{r_\pm =\alpha \pm i\; V.I.}$

Notice there are always complex eigenvalues, and $\alpha=0$ is critical value since $\alpha=0, \alpha>0, \alpha<0$ have different phase portraits

When $\alpha=0$ , real parts of eigenvalues are 0

When value of $\alpha$ is slightly below 0
Then $\alpha<0$ , real parts of eigenvalues are negative

When value of $\alpha$ is slightly above 0
Then $\alpha>0$ , real parts of eigenvalues are positive
« Last Edit: November 25, 2018, 09:27:37 AM by Victor Ivrii »

#### Jiacheng Ge

• Full Member
•   • Posts: 19
• Karma: 8 ##### Re: Q6 TUT 0401
« Reply #3 on: November 18, 2018, 12:50:58 PM »
My answer to c is slightly different.

#### Jingze Wang

• Full Member
•   • Posts: 30
• Karma: 25 ##### Re: Q6 TUT 0401
« Reply #4 on: November 18, 2018, 03:10:49 PM »
I am sorry, but what's the difference? I cannot find it. #### Michael Poon ##### Re: Q6 TUT 0401
« Reply #5 on: November 18, 2018, 04:25:25 PM »
I think the difference is the direction of rotation.

#### Jingze Wang

• Full Member
•   • Posts: 30
• Karma: 25 ##### Re: Q6 TUT 0401
« Reply #6 on: November 18, 2018, 07:39:14 PM »
Our graphs are all clockwise #### Victor Ivrii ##### Re: Q6 TUT 0401
« Reply #7 on: November 18, 2018, 10:59:34 PM »
Our graphs are all clockwise Why?

#### Nikita Dua

• Jr. Member
•  • Posts: 14
• Karma: 0 ##### Re: Q6 TUT 0401
« Reply #8 on: November 18, 2018, 11:10:01 PM »
The potraits are clockwise, Since b > 0 and  c < 0

#### Michael Poon ##### Re: Q6 TUT 0401
« Reply #9 on: November 18, 2018, 11:18:17 PM »
Our graphs are all clockwise Isn't Guanyao's 2nd graph counterclockwise?

#### Michael Poon ##### Re: Q6 TUT 0401
« Reply #10 on: November 18, 2018, 11:30:36 PM »
Our graphs are all clockwise Why?

If we choose a unit vector $\begin{bmatrix}1 \\ 0\end{bmatrix}$ and do matrix vector multiplication with the matrix $\begin{bmatrix} \alpha > 0 & 1 \\ -1 & \alpha > 0 \end{bmatrix}$, the vector $\begin{bmatrix}\alpha > 0 \\ -1\end{bmatrix}$ follows the phaseportrait CW. $\alpha$ > 0 means the phaseportrait points outward and is unstable.

If we choose a unit vector $\begin{bmatrix}1 \\ 0\end{bmatrix}$ and do matrix vector multiplication with the matrix $\begin{bmatrix} \alpha < 0 & 1 \\ -1 & \alpha < 0 \end{bmatrix}$, the vector $\begin{bmatrix}\alpha < 0 \\ -1\end{bmatrix}$ also follows the phaseportrait CW. $\alpha$ < 0 means the phaseportrait points inward and is stable.

#### Victor Ivrii ##### Re: Q6 TUT 0401
« Reply #11 on: November 19, 2018, 02:15:43 AM » 