MAT244--2019F > Quiz-5



Kun Zheng:
Good afternoon,
Please enjoy the last day before reading week.
The question I had on lecture was:
Find the general solution of the given differential equation.
$y''+9y=9sec^23t,  0<t<\pi/6$
For the homogeneous side y''+9y=0:
$r_1=3i, r_2=-3i$
so the complementary solution is
For the non-homogeneous side:
$p(t)=0, q(t)=9, g(t)=9sec^23t$ are continuous on $0<t<\pi/6$
y_1(t) & y_2(t) \\
y'_1(t) & y'_2(t)
cos3t & sin3t \\
-3sin3t & 3cos3t
Thus, $W_1(t)=-\int \frac{y_2(t)g(t)}{W_{1,2}(t)}dt=-\int \frac{sin3t9sec^23t}{3}dt=-3\int \frac{sin3t}{cos^23t}dt$
$=-3\int tan3tsec3tdt=-sec3t$
And, $W_2(t)=\int \frac{y_1(t)g(t)}{W_{1,2}(t)}dt=\int \frac{3cos3t/cos^23t}{3}dt$
$=\int 3sec3t dt=ln|sec3t+tan3t|$
(Be careful the integral of trigonometric here, honestly I made a mistake may lose some mark here on the lecture quiz, we must memorize them)
In conclusion, $Y(t)=y_c(t)+y_p(t)$
This is all, hope you have a good reading week!


[0] Message Index

Go to full version