1
Term Test 1 / Re: Problem 2 (afternoon)
« on: October 23, 2019, 07:17:06 AM »question c is wrong, C2 should be 1
a) divide each side by $x(2x+1)$:
$y”+\frac{2x+2}{x(2x+1)}y’-\frac{2}{x(2x+1)}y=0.$
$p(x)=\frac{2x+2}{x(2x+1)},W=ce^{-\int p(x)dx}.$
let $p(x)=\frac{A}{x}+\frac{B}{2x+1}.$
$p(x)=\frac{(2A+B)x+A}{x(2x+1)}, A=2,B=-2.$
$p(x)=\frac{2}{x}-\frac{2}{2x+1}.$
$\int-p(x)dx=\int\frac{2}{2x+1}-\frac{2}{x}dx=ln(2x+1)-2ln(x).$
$W=ce^{ln(2x+1)-2ln(x)}=ce^{ln(2x+1)}e^{ln(x^{-2})}=c(2x+1)(\frac{1}{x^{2}})=c(\frac{2}{x}+\frac{1}{x^{2}})$
b) let $c=1,W=\frac{2}{x}+\frac{1}{x^{2}}=\begin{array}{cc}
x+1 & y_{2}\\
1 & y_{2}'
\end{array}=(x+1)y_{2}'-y_{2}.$
divide each side by $(x+1): y_{2}'-\frac{1}{x+1}y_{2}=\frac{2}{x(x+1)}+\frac{1}{x^{2}(x+1)}.$
$\mu=e^{\int p_{2}(x)dx}=e^{\int-\frac{1}{x+1}dx}=e^{-ln(x+1)}=\frac{1}{x+1}.$
multiply each side by $\mu:\frac{1}{x+1}y_{2}'-\frac{1}{(x+1)^{2}}y_{2}=\frac{2}{x(x+1)^{2}}+\frac{1}{x^{2}(x+1)^{2}}.$
$\frac{1}{x+1}y_{2}=-\frac{1}{x(x+1)},y_{2}=-\frac{1}{x}.$
Therefore, $y_{1}=x+1,y_{2}=-\frac{1}{x}.$
c)$y(-1)=1,y'(-1)=0.$
$y(x)=C_{1}y_{1}+C_{2}y_{2}=C_{1}(x+1)+C_{2}(-\frac{1}{x}).$
$y'(x)=C_{1}+C_{2}x^{-2}.$
$\begin{cases}
C_{1}=1 & C_{2}=-1\end{cases}.$
Therefore, the general solution is $y(x)=x+1+\frac{1}{x}.$
because when x=-1,y=1, $y(x)=C_{1}y_{1}+C_{2}y_{2}=C_{1}(x+1)+C_{2}(-\frac{1}{x}).$
C_{2}=1\end{cases}.$