Solution
a)
$y'' + \frac{xsin(x)}{xcos(x)-sin(x)}y'- \frac{sin(x)}{xcos(x)-sin(x)}y = 0$
$p(x) = \frac{xsin(x)}{xcos(x)-sin(x)}$
$w = ce^{-\int p(x)dx} =ce^{-\int \frac{xsin(x)}{xcos(x)-sin(x)}} $
let $u = xcos(x)-sin(x), du =-xsin(x) $
$w = ce^{- \int \frac{-1}{u} du} = ce^{ \int \frac{1}{u} du} = ce^{lnu} = ce^{ln(xcos(x)-sin(x))} = c(xcos(x)-sin(x))$
let $ c = 1 , w = xcos(x)-sin(x)$
b)
check $y_1 =x$ is a solution.
$y_1' = 1, y_2'' = 0$
substitute them into equation,
we get
$xsin(x)- sin(x)x = 0$
so x is a solution
w = $\begin{vmatrix}
x& y_2 \\
1 & y_2'
\end{vmatrix}$
$xy_2' - y_2 = xcos(x)-sin(x) $
so $y_2 = sinx$ OK. V.I.
c)
$y(t) = c_1x + c_2 sinx$
since $y(π) = π, y'(π) = 0$
$π = c_1 π + c_2sin(π)$
$π = c_1π $
so $c_1 = 1$
$y'(t) = c_1 + c_2 cos(x)$
$π = 1 - c2$
$c_2 = 1 -π $ Wrong.
$y(t) = x + (1-π) sinx$