Find the solution:
$u_{x}+3u_{y}=xy$
$u_{x=0}=0$
By examining Integral Lines:
$\frac{1}{dx}=\frac{3}{dy}=\frac{xy}{du}$ <very ugly form. Never use it $\color{blue} {\frac{dx}{1}=\frac{dy}{3}=\frac{du}{xy}}$
Then from the first equality:
$3x=y+C$ where C is some constant.
$y=3x-C$
Then again from the Integral Lines:
$dx(xy)=du$
$dx(x(3x-C))=du$
$u=x^{3}-\frac{C}{2}x^{2}+C_{1}$
Then by the initial condition:
$u(x=0)=0$
$C_{1}=0$
Therefore,$C=3x-y$
Therefore,
$u(x,y)=x^{3}-\frac{1}{2}x^{2}C$
$u(x,y)=x^{3}-\frac{1}{2}x^{2}(3x-y)$
$u(x,y)=-\frac{1}{2}x^{3}+\frac{1}{2}x^{2}y$
Check:
$u_{x}(x,y)=-\frac{3}{2}x^{2}+xy$
$u_{y}(x,y)=\frac{1}{2}x^{2}$
$u_{x}+3u_{y}=xy$