Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Term Test 2
»
TT2B Problem 2
« previous
next »
Print
Pages: [
1
]
Author
Topic: TT2B Problem 2 (Read 8059 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
TT2B Problem 2
«
on:
November 24, 2018, 05:20:09 AM »
(a)
Find the decomposition into power series at ${z=0}$ of $$f(z)=(1-z)^{-1}.$$ What is the radius of convergence?
(b)
Plugging in $-z^2$ instead of $z$ and integrating, obtain a decomposition at $z=0$ of $\arctan (z)$.
«
Last Edit: November 29, 2018, 07:27:48 AM by Victor Ivrii
»
Logged
Yifei Wang
Jr. Member
Posts: 10
Karma: 3
Re: TT2 Problem 2
«
Reply #1 on:
November 24, 2018, 05:38:47 AM »
I think the power is -1/2 inside of the -1
Correct V.I. It was actually Test2B
«
Last Edit: November 29, 2018, 07:28:07 AM by Victor Ivrii
»
Logged
Wanying Zhang
Full Member
Posts: 21
Karma: 6
Re: TT2 Problem 2
«
Reply #2 on:
November 24, 2018, 12:15:18 PM »
Here is the solution to problem 2.
You need to know decomposition of $(1-z)^{-1}$. The rest is simply wrong. V.I.
«
Last Edit: November 29, 2018, 07:19:35 AM by Victor Ivrii
»
Logged
Huanglei Ln
Jr. Member
Posts: 8
Karma: 7
Re: TT2 Problem 2
«
Reply #3 on:
November 25, 2018, 01:34:47 AM »
$$
\begin{aligned}
a)f(z)&=\frac{1}{1-z}=\sum^{\infty}_{n=0}z^n \\
\frac{1}{R}&=\lim_{n\rightarrow {\infty} }|\frac{1}{1}|=1\Rightarrow R=1
\end{aligned}
$$
$$
\begin{aligned}
b)f(-z^2)&=\frac{1}{1+z^2}=\sum^{\infty}_{n=o}{-z^2}^n=\Sigma^{\infty}(-1)^nz^{2n} \\
\Rightarrow \int f(-z^2)dz&=\sum^{\infty}_{n=o}(-1)^n\int^{2n}dz\\
\Rightarrow \int \frac{1}{1+z^2}dz&=\sum^{\infty}_(n=0)(-1)^n\int z^{2n}dz\\
\Rightarrow \arctan(z)+c&=\sum^{\infty}_{n=0}(-1)^n \frac{z^{2n+1}}{2n+1}\\
\Rightarrow \arctan(z)&=\sum^{\infty}_{n=0}\frac{(-1)^n}{2n+1}z^{2n+1} +c
\end{aligned}
$$
«
Last Edit: November 29, 2018, 07:24:02 AM by Victor Ivrii
»
Logged
Huanglei Ln
Jr. Member
Posts: 8
Karma: 7
Re: TT2 Problem 2
«
Reply #4 on:
November 25, 2018, 01:39:58 AM »
\begin{aligned}
a)f(z)&=\frac{1}{1-z}=\sum^{\infty}_{n=o}z^n \\
\frac{1}{R}&=lim_{n\rightarrow {\infty} }|\frac{1}{1}|=1\Rightarrow R=1
\end{aligned}
\end{displaymath}
\begin{displaymath}
\begin{aligned}
b)f(-z^2)&=\frac{1}{1+z^2}=\sum^{\infty}_{n=o}{-z^2}^n=\Sigma^{\infty}(-1)^nz^{2n} \\
\Rightarrow \int f(-z^2)dz&=\sum^{\infty}_{n=o}(-1)^n\int^{2n}dz\\
\Rightarrow \int \frac{1}{1+z^2}dz&=\sum^{\infty}_(n=0)(-1)^n\int z^{2n}dz\\
\Rightarrow artan(z)+c&=\sum^{\infty}_{n=0}(-1)^n \frac{z^{2n+1}}{2n+1}\\
\Rightarrow artan(z)&=\sum^{\infty}_{n=0}\frac{(-1)^n}{2n+1}z^{2n+1} +c
\end{aligned}
Logged
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Re: TT2 Problem 2
«
Reply #5 on:
November 29, 2018, 07:23:37 AM »
Huanglei
I fixed your LaTeX. Don't learn it from crappy sources!
Also as $z=0$ you'll see that $c=0$. In actual test missing this will lead to the mark reduction
«
Last Edit: November 29, 2018, 07:25:10 AM by Victor Ivrii
»
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Term Test 2
»
TT2B Problem 2