$y''-8y'+25y=18e^{4x}+104cos(3x)\\
First \,,solve \,the\, homogenous \,eqution:\\
r^{2}-8r+25=0\\
r^{2}-8r+16=-9\\
(r-4)^{2}=-9,r-4=9i\\
r_{1}=3i+4\\
r_{2}=-3i+4\\
solution \,to \,the\, homogenous\, eqution \,is\\
y_{c}(x)=C_{1}e^{4x}cos{3x}+C_{2}e^{4x}sin{3x}
now\,we\,are\,going\,to\,solve\,y_{p}(x)\\
y''-8y'+25y=18e^{4x}\\
y_{p}(x)=Ae^{4x}\\
y'=4Ae^{4x}\\
y'=16Ae^{4x}\,,then y''-8y'+25y=16Ae^{4x}-8(4Ae^{4x})+25(Ae^{4x})\\
A=2\\
Y_{P}(x)=2e^{4x}\\
and\,let's\,find\,y_{p_{2}}(x),\\
y''-8y'+25y=104cos(3x),\\
let \,y_{P}=Acos(3x)+Bsin(3x)\\
y'_{p}=-3Asin(3x)+3Bcos(3x)\\
y''_{p}=-9Acos(3x)-9Bsin(3x)\\
y''-8y'+25y=-9Acos(3x)-9Bsin(3x)-8(-3Asin(3x)+3Bcos(3x))+25(-3Asin(3x)+3Bcos(3x)\\
A=2,B=-3\,y_{P}=2cos(3x)-3sin(3x)
y=y_{c}+y_{p}=C_{1}e^{4x}cos{3x}+C_{2}e^{4x}sin{3x}+2e^{4x}+2cos(3x)-3sin(3x)\\
let\,y(0)=0,y'(0)=0,\\
C_{1}=-4,C_{2}=\frac{1}{3}\\
So\,,the\,final\,solution\,is\,-4e^{4x}cos{3x}+\frac{1}{3}e^{4x}sin{3x}+2e^{4x}+2cos(3x)-3sin(3x)$
Correctly found particular and general solution, (b) incorrect V.I.