First, we must change to homogeneous equation
$$ y'''(t) + y'(t) = 0 $$
Then we must find the characteristic equation
$$ r^{3} + r = 0 $$
$$ r ( r^{2} + 1) = 0 $$
$$ \mbox{Therefore, } r = 0 \mbox{ or } r = i \mbox{ or } r = -i $$
$$ \mbox{Therefore, } y_1(t) = 1 \mbox{ and } y_2(t) = \cos(t) \mbox{ and } y_3(t) = \sin(t) $$
$$ \mbox{Therefore, } y_c(t) = c_1 + c_2\cos(t) + c_3\sin(t) $$
$$ \mbox{Therefore, the Wronskian = W} (y_1, y_2, y_3)(t) =
\begin{vmatrix}
1&\cos(t)&\sin(t)\\
0&-\sin(t)&\cos(t)\\
0&-\cos(t)&-\sin(t)\\
\end{vmatrix} = \sin^{2}(t) + \cos^{2}(t) = 1
$$
$$ \mbox{Now we must find } W_1(y_1, y_2, y_3) $$
$$ \mbox{Therefore, } W_1(y_1, y_2, y_3)(t) =
\begin{vmatrix}
0&\cos(t)&\sin(t)\\
0&-\sin(t)&\cos(t)\\
1&-\cos(t)&-\sin(t)\\
\end{vmatrix} = \cos^{2}(t) + \sin^{2}(t) = 1
$$
$$ \mbox{Now we must find } W_2(y_1, y_2, y_3) $$
$$ \mbox{Therefore, } W_2(y_1, y_2, y_3)(t) =
\begin{vmatrix}
1&0&\sin(t)\\
0&0&\cos(t)\\
0&1&-\sin(t)\\
\end{vmatrix} = -\cos(t)
$$
$$ \mbox{Now we must find } W_3(y_1, y_2, y_3) $$
$$ \mbox{Therefore, } W_3(y_1, y_2, y_3)(t) =
\begin{vmatrix}
1&\cos(t)&0\\
0&-\sin(t)&0\\
0&-\cos(t)&1\\
\end{vmatrix} = -\sin(t)
$$
$$ \mbox{Therefore, }u_1' = \sec(t) $$
$$ \mbox{Therefore, }u_2' = \sec(t)(-\cos(t)) = -1 $$
$$ \mbox{Therefore, }u_3' = \sec(t)(-sin(t)) = \frac{1}{\cos(t)}(-\sin(t)) = -\tan(t) $$
$$ \mbox{Therefore, } u_1 = \int_{t_0}^{t} \sec(t) dt = \log(\sec(t) + \tan(t)) $$
$$ \mbox{Therefore, } u_2 = \int_{t_0}^{t} -1 dt = -t $$
$$ \mbox{Therefore, } u_3 = \int_{t_0}^{t} -\tan(t) dt = \log(\cos(t)) $$
$$ \mbox{Therefore, } y_p(t) = \log(\sec(t) + \tan(t)) + (-t)(\cos(t)) + \log(\cos(t))(\sin(t)) $$
$$ \mbox{We know that } y(t) = y_c(t) + y_p(t) $$
$$ y(t) = c_1 + c_2\cos(t) + c_3\sin(t) + \log\bigl(\sec(t) + \tan(t)\bigr) + (-t)(\cos(t)) + \log(\cos(t))(\sin(t)) $$