homogeneous equation is
$y^{'''} - y^{'} = 0$
then $r^3 - r = 0$
$r = 0, \pm 1$
thus, $y_{c}(t) = c_{1} + c_{2}e^t + c_{3}e^{-t}$
\begin{align*}
W(t) &=
\begin{bmatrix}
1 & e^t & e^{-t} \\
0 & e^t & -e^{-t}\\
0 & e^t & e^{-t}
\end{bmatrix} \\
\\
&= 1*(-1)^{1+1}
\begin{bmatrix}
e^t & -e^{-t}\\
e^t & e^{-t}
\end{bmatrix}
+ e^t(-1)^{2+1}
\begin{bmatrix}
0 & -e^{-t}\\
0 & e^{-t}
\end{bmatrix}
+ e^{-t}(-1)^{3+1}
\begin{bmatrix}
0 & e^t\\
0 & e^t
\end{bmatrix}\\
\\
&= e^t*e^t - (-e^{-t})e^t + 0 + 0 \\
\\
&= 1 + 1 \\
\\
&= 2
\end{align*}
\begin{align*}
W_{1}(t) &=
\begin{bmatrix}
0 & e^t & e^{-t}\\
0 & e^t & -e^{-t}\\
1 & e^t & e^{-t}
\end{bmatrix}\\
\\
&=1*(-1)^{1+3}
\begin{bmatrix}
e^t & e^{-t}\\
e^t & -e^{-t}
\end{bmatrix}\\
\\
&= -1-1 \\
\\
&= -2
\end{align*}
\begin{align*}
W_{2}(t) &=
\begin{bmatrix}
1 & 0 & e^{-t}\\
0 & 0 & -e^{-t}\\
0 & 1 & e^{-t}
\end{bmatrix}\\
\\
&=1*(-1)^{1+1}
\begin{bmatrix}
0 & -e^{-t}\\
1 & e^{-t}
\end{bmatrix}\\
\\
&= e^{-t}
\end{align*}
\\
\begin{align*}
W_{3}(t) &=
\begin{bmatrix}
1 & e^t & 0\\
0 & e^t & 0\\
0 & e^t & 1
\end{bmatrix}\\
\\
&=1*(-1)^{1+1}
\begin{bmatrix}
e^{t} & 0\\
e^{t} & 1
\end{bmatrix}\\
\\
&= e^{t}
\end{align*}
\begin{align*}
y_{p}(t) &= y_{1}\int \frac{g(t)W_{1}(t)}{W(t)} dt + y_{2}\int \frac{g(t)W_{2}(t)}{W(t)} dt + y_{3}\int \frac{g(t)W_{3}(t)}{W(t)} dt \\
\\
&= 1\int \frac{\cosh(t)(-2)}{2)} dt + e^t\int \frac{\cosh(t)e^{-t}}{2} dt + e^{-t}\int \frac{\cosh(t)e^t}{2} dt \\
\\
&= -1\sinh(t) + \frac{1}{2}e^t\int \cosh(t)e^{-t} dt + \frac{1}{2}e^{-t}\int \cosh(t) e^t dt \\
\\
&= -\sinh(t) + \frac{1}{2}e^t \int \cosh(t)e^{-t}dt + \frac{1}{2}e^{-t}\int \cosh(t)e^t dt \\
\\
&= -\sinh(t) + \frac{1}{2}e^t(\frac{t}{2} - \frac{e^{-2t}}{4}) + \frac{1}{2}e^{-t}(\frac{t}{2}+ \frac{e^{2t}}{4})
\end{align*}
Therefore $y(t) = c_{1} + c_{2}e^t + c_{3}e^{-t} -\sinh(t) + \frac{1}{2}e^t(\frac{t}{2} - \frac{e^{-2t}}{4}) + \frac{1}{2}e^{-t}(\frac{t}{2}+ \frac{e^{2t}}{4})$