1
MAT244--Lectures & Home Assignments / Real Repeated Eigenvalue
« on: December 11, 2018, 03:37:44 PM »
Has anyone encountered an example in which a matrix $A$ has two independent eigenvectors with eigenvalue $\lambda$, and the phase portrait would therefore be an unstable or stable proper node?
If so, please share! If it's in the textbook, a page number is fine!
If so, please share! If it's in the textbook, a page number is fine!