### Author Topic: final review : matrix of non-home variation of parameter  (Read 1220 times)

#### wenlinwang

• Newbie
• Posts: 3
• Karma: 0
##### final review : matrix of non-home variation of parameter
« on: November 27, 2018, 05:53:14 PM »
Find the general solution of the system of ODEs
$x_t' = x + y + \frac{e^t}{\cos (t)}$
$y_t' = -x + y + \frac{e^t}{\sin(t)}$

#### Meiyi Lu

• Jr. Member
• Posts: 5
• Karma: 1
##### Re: final review : matrix of non-home variation of parameter
« Reply #1 on: November 27, 2018, 06:02:47 PM »
\begin{align*}
\begin{bmatrix}
x' \\ y'
\end{bmatrix} &=
\begin{bmatrix}
1 & 1 \\
-1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\ y
\end{bmatrix}
+
\begin{bmatrix}
\frac{e^t}{\cos t}\\
\frac{e^t}{\sin t}
\end{bmatrix}
\end{align*}
\begin{align*}
x(t) &= e^{(1+i)t}
\begin{bmatrix}
1 \\ i
\end{bmatrix}\\&= e^t
\begin{bmatrix}
\cos t + i\sin t\\
i\cos t - \sin t
\end{bmatrix}\\
&= e^t
\begin{bmatrix}
\cos t\\
-\sin t
\end{bmatrix} + ie^i
\begin{bmatrix}
\sin t\\
\cos t
\end{bmatrix}
\end{align*}
\begin{equation*}
\phi = \begin{bmatrix}
e^t \cos t & e^t \sin t \\
-e^t \sin t & e^t \cos t
\end{bmatrix}
\end{equation*}
\begin{equation*}
\phi u' = g
\end{equation*}
\begin{equation*}
u_1' = 0
\end{equation*}
\begin{equation*}
u_2' = \frac{1}{\sin t \cos t }
\end{equation*}
\begin{equation*}
u_2 = \int \frac{1}{\sin t \cos t} dt = \ln |\tan t| + c_2
\end{equation*}
\begin{equation*}
u_1 = c_1
\end{equation*}
\begin{equation*}
x = \phi u = c_1
\begin{bmatrix}
e^t \cos t \\ -e^t \sin t
\end{bmatrix} + (c_2 + \ln |\tan t|)
\begin{bmatrix}
e^t\sin t \\
e^t\cos t
\end{bmatrix}
\end{equation*}
« Last Edit: November 28, 2018, 04:30:05 AM by Victor Ivrii »