Author Topic: TUT0401  (Read 3440 times)

Weiyin Wu

  • Newbie
  • *
  • Posts: 4
  • Karma: 0
    • View Profile
TUT0401
« on: February 16, 2020, 08:26:05 PM »
Find the radius of convergence of the given power series.
$$\sum_{k=1}^{\infty} k(z-1)^{k}$$
$$\frac{1}{R}=\lim_{k\to\infty} |\frac{a_{k+1}}{a_{k}}|=\lim_{k\to\infty} |\frac{k+1}{k}|=1$$
$$R=1$$