Author Topic: Quiz-2 / TUT0102  (Read 4487 times)

lilywq

  • Jr. Member
  • **
  • Posts: 5
  • Karma: 0
    • View Profile
Quiz-2 / TUT0102
« on: October 04, 2019, 04:44:01 PM »
\begin{align*}
x^2y^3 + x(1+y^2)y' &= 0   && \equation{\mu = 1/xy^3}\\
1/xy^3*(x^2y^3 + x(1+y^2)y')  &= 0 \\
x+y^{-3}(1+y^2)y' &= 0\\
M=x,N=y^{-3}(1+y^2)\\
M_y(x,y)=0=N_x(x,y)\\
\psi_x(x,y)=M(x,y)=x, \psi_y(x,y)=N(x,y)=y^{-3}(1+y^2)\\
\psi=x^2/2+h(y)\\
\psi_y=h'(y)=y^{-3}(1+y^2)\\
h(y)=ln(x)-1/(2y^2)\\
\psi=x^2/2+ln(x)-1/(2y^2)=c\\
\psi=x^2+2ln(x)-y^{-2}=c
\end{align*}