$y(0)=0$,
$$y_n=y_{n-1}+h f(t_n,y_n),$$
with $f(t,y)=3y^2-t$.
$t_0=0$, $y_0=0$, $f(t_0,y_0)=0$,
$y_1=0+\frac{1}{3}\cdot 0=0$.
$t_1=\frac{1}{3}$, $y_1=0$, $f(t_1,y_1)=-\frac{1}{3}$,
$y_2= 0+ \frac{1}{3}\cdot (-\frac{1}{3})=-\frac{1}{9}$,
$t_2=\frac{2}{3}$, $y_2=-\frac{1}{9}$, $f(t_2,y_2)=-\frac{17}{27}$,
$y_3=-\frac{1}{9}+\frac{1}{3}\cdot (-\frac{17}{27}) =-\frac{26}{81}$.
I edited this post. Do not use "x" or "*" for multiplication (* is a convolution, to be studied in APM346 f.e.) V.I.