Author Topic: TUT 5103 Quiz5  (Read 2005 times)

Zuwei Zhao

  • Jr. Member
  • **
  • Posts: 10
  • Karma: 0
    • View Profile
TUT 5103 Quiz5
« on: November 01, 2019, 02:00:00 PM »
\noindent Verify that the given functions y 1and y 2 satisfy the corresponding homogeneous equation;
then find a particular solution of the given nonhomogeneous equation.
$$
\begin{array}{l}{(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{2} e^{-t}, 0<t<1} \\ {y_{1}(t)=e^{t}, y_{2}(t)=t}\end{array}
$$

$$
y^{\prime \prime}+\frac{t}{1-t} y^{\prime}-\frac{1}{1-t} y=-2(t-1) e^{-t}
$$
$$
\begin{array}{l}{w=\left|\begin{array}{ll}{e^{t}} & {t} \\ {e^{t}} & {1}\end{array}\right|=e^{t}-t e^{t}} \\ {w_{1}=\left|\begin{array}{ll}{0} & {t} \\ {1} & {1}\end{array}\right|=-t \quad w_{2}=\left|\begin{array}{ll}{e^{t}} & {0} \\ {e^{t}} & {1}\end{array}\right|=e^{\tau}}\end{array}
$$
$$
\begin{aligned} Y(t) &=e^{t} \int \frac{-t \cdot\left(-2(t-1) e^{-t}\right)}{e^{t}-t e^{t}} d t+t \int \frac{e^{t}\left(-2(t-1) e^{-t}\right)}{e^{t}-t e^{t}} d t \\ &=e^{t} \int \frac{-t \cdot\left(t^{2}(t-1) e^{-t}\right)}{e^{t}(1-t)}+t \int \frac{e^{t}\left(t+2(t-1) e^{-t}\right)}{e^{t}(1-t)} d t \\ &=e^{t} \int-2 t e^{-2 t} d t+\int 2 e^{-t} d t \\ &=-2 e^{t} \int t e^{-2 t} d t-2 t e^{-t} \end{aligned}
$$
$$
\begin{array}{ll}{u=t} & {d v=e^{-2 t}} \\ {d u=d t} & {v=-\frac{1}{2} e^{-2 t}}\end{array}
$$
$$
\begin{array}{l}{\displaystyle =-2 e^{t}\left(-\frac{1}{2} e^{-2 t} \cdot t+\int \frac{1}{2} e^{-2 t} d t\right)+t \int 2 e^{-t} d t} \\ {\displaystyle =-2 e^{t}\left(-\frac{1}{2} e^{-2 t} t-\frac{1}{4} e^{-2 t}\right)-2 t e^{-t}} \\ {\displaystyle =t e^{-t}+\frac{1}{2} e^{-t}-2 t e^{-t}} \\ {\displaystyle =\left(\frac{1}{2}-t\right) e^{-t}}\end{array}
$$

$\therefore$ the particular solution of the given non-homogeneous equation is
$$
Y(t)=\left(\frac{1}{2}-t\right) e^{-t}
$$