Toronto Math Forum
MAT3342018F => MAT334Tests => Quiz2 => Topic started by: Victor Ivrii on October 05, 2018, 06:12:30 PM

Find all points of continuity of the given function:
\begin{equation*}(z)=(1z^2)^{3}.
\end{equation*}

Since\begin{equation*} z^2=x^2+y^2\end{equation*},
then \begin{equation*}g(z)= \frac{1}{[1(x^2+y^2)]^3}\end{equation*}
Hence, g(z) is not continuous at all points of circle \begin{equation*}x^2+y^2=1\end{equation*}