Author Topic: Q6 TUT 0101  (Read 5310 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q6 TUT 0101
« on: November 17, 2018, 03:49:22 PM »
The coefficient matrix contains a parameter $\alpha$.

(a)  Determine the eigenvalues in terms of $\alpha$.
(b)  Find the critical value or values of  $\alpha$  where the qualitative nature of the phase portrait for the system changes.
(c) Draw a phase portrait for a value of  $\alpha$ slightly below, and for another value slightly above, each critical value.
$$\mathbf{x}' =\begin{pmatrix}
\frac{5}{4} &\frac{3}{4}\\
\alpha & \frac{5}{4}
\end{pmatrix}\mathbf{x}.$$
« Last Edit: November 17, 2018, 04:02:05 PM by Victor Ivrii »

Qing Zong

  • Jr. Member
  • **
  • Posts: 7
  • Karma: 0
    • View Profile
Re: Q6 TUT 0101
« Reply #1 on: November 17, 2018, 04:55:24 PM »
This is my solution

Jiacheng Ge

  • Full Member
  • ***
  • Posts: 19
  • Karma: 8
    • View Profile
Re: Q6 TUT 0101
« Reply #2 on: November 18, 2018, 12:57:01 PM »
My answer is different.
« Last Edit: November 18, 2018, 01:04:09 PM by Jiacheng Ge »

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Q6 TUT 0101
« Reply #3 on: November 25, 2018, 09:45:15 AM »
Both solutions are barely readable (one due to poor handwriting, second due to making crappy snapshot instead of scanning). The second is complete, but one should explain how "it is different".