For Part(a), Note that for stationary points, we should have
\begin{equation}
x^2+y^2-1=0
\end{equation}
And at the same time
\begin{equation}
-2xy=0
\end{equation}
Therefore there're totally four stationary points. They are
\begin{equation}
(x,y)=(1,0), (-1,0), (0,1) or (0,-1).
\end{equation}
\begin{equation}
J={
\left[\begin{array}{ccc}
2x & 2y \\
-2y & -2x
\end{array}
\right ]},
\end{equation}
At point (1,0),
\begin{equation}
J[1,0]={
\left[\begin{array}{ccc}
2 & 0 \\
0 & -2
\end{array}
\right ]},
\end{equation}
At point (-1,0),
\begin{equation}
J[-1,0]={
\left[\begin{array}{ccc}
-2 & 0 \\
0 & 2
\end{array}
\right ]},
\end{equation}
At point (0,1),
\begin{equation}
J[0,1]={
\left[\begin{array}{ccc}
0 & 2 \\
-2 & 0
\end{array}
\right ]},
\end{equation}
At point (0,-1),
\begin{equation}
J[0,-1]={
\left[\begin{array}{ccc}
0 & -2 \\
2 & 0
\end{array}
\right ]},
\end{equation}