Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Topics - Jake Kirbie

Pages: [1]
Quiz-1 / Q1: TUT0602
« on: September 27, 2019, 02:31:55 PM »
Solve the given differential equation:

$$\frac{dy}{dx} = \frac{x-e^{-x}}{y+e^y}$$

This is a separable differential equation. Rearranging, we have

$$(y+e^y)dy = (x-e^{-x})dx\ \Rightarrow\ \int(y+e^y)dy = \int(x-e^{-x})dx\ \Rightarrow\ y^2 + 2e^y = x^2 + 2e^{-x} + C$$

is the general implicit solution.

Pages: [1]