Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT244--2020F
»
MAT244--Test & Quizzes
»
Quiz 1
»
Quiz#1 Section 6101
« previous
next »
Print
Pages: [
1
]
Author
Topic: Quiz#1 Section 6101 (Read 5209 times)
Rurui Huang
Newbie
Posts: 1
Karma: 0
Quiz#1 Section 6101
«
on:
September 25, 2020, 09:39:54 AM »
Hi, everyone. Here is my solution to this question:
Find the general solution of the given differential equation, and use it to determine how solutions behave as t → ∞:
y' + y = te^(-t) + 1
«
Last Edit: September 25, 2020, 09:54:12 AM by Rurui Huang
»
Logged
Yuyang Wang
Newbie
Posts: 3
Karma: 0
Re: Quiz#1 Section 6101
«
Reply #1 on:
September 25, 2020, 02:02:06 PM »
Hi, this is my answer to quiz 1 in section 6101.
Logged
tianrunyuan
Newbie
Posts: 2
Karma: 0
Re: Quiz#1 Section 6101
«
Reply #2 on:
September 26, 2020, 04:01:34 AM »
Hi guys, here is my solution for the quiz problem:
Solve the given differential equation:
dy/dx = [x-e^(-x)]/[y+e^y]
I solved it using separable method
Logged
Xiaoman Luo
Newbie
Posts: 4
Karma: 0
Re: Quiz#1 Section 6101
«
Reply #3 on:
September 28, 2020, 11:14:37 PM »
Hi everyone. This is my solution for the quiz1.
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT244--2020F
»
MAT244--Test & Quizzes
»
Quiz 1
»
Quiz#1 Section 6101