$$f(z)=\frac{8}{(z-3)(z+5)}=\frac{1}{z-3}-\frac{1}{z+5}$$
(a)as$|z|<3$,
$$f(z)= -\frac{1}{3} \frac{1}{1-\frac{z}{3}}- \frac{1}{5} \frac{1}{1-(-\frac{z}{5})}=-\frac{1}{3}\sum_{n=0}^{\infty}(\frac{z}{3})^n-\frac{1}{5}\sum_{n=0}^{\infty}(-\frac{z}{5})^n$$
(b)as$3<|z|<5$,
$$f(z)= \frac{1}{z} \frac{1}{1-\frac{3}{z}}- \frac{1}{5} \frac{1}{1-(-\frac{z}{5})}=\frac{1}{z}\sum_{n=0}^{\infty}(\frac{3}{z})^n-\frac{1}{5}\sum_{n=0}^{\infty}(-\frac{z}{5})^n=\sum_{n=0}^{\infty}3^nz^{-n-1}-\frac{1}{5}\sum_{n=0}^{\infty}(-\frac{z}{5})^n$$
(c)as$|z|>5$,
$$f(z)= \frac{1}{z} \frac{1}{1-\frac{3}{z}}- \frac{1}{z} \frac{1}{1-(-\frac{5}{z})}=\sum_{n=0}^{\infty}3^nz^{-n-1}-\sum_{n=0}^{\infty}(-5)^nz^{-n-1}=\sum_{n=0}^{\infty}z^{-n-1}(3^n-(-5)^n)$$