Question: $ty^{'}+2y=sin(t)$, $t>0$
standard equation form: $y^{'}+\frac{2}{t}y=\frac{sin(t)}{t}$
$p(t) = \frac{2}{t}$, $g(t) = \frac{sin(t)}{t}$
$u = e^{\int p(t)}dt = e^{2\int \frac{1}{t}dt} = t^2$, then we multiply both sides with $u$, and we get:
$t^2y^{'} + 2ty = tsin(t)$
$(t^2y)^{'}=tsin(t)$
$d(t^2y) = tsin(t)dt$
$t^2y = \int tsin(t) dt$
(integrating by parts, $u=t \implies du =dt$ and $dv=sin(t)$ and $v=-cos(t)$
$\int tsin(t)dt = uv - \int vdu$
$=-tcos(t)-\int (-cos(t))dt$
$=-tcos(t) +\int cos(t)dt$
$=-tcos(t) +sin(t) + C$)
Therefore, $t^2y=-tcos(t)+sin(t) + C$
$y=\frac{-tcos(t)+sin(t)+C}{t^2}$.
Since $t>0$, and when $t \rightarrow \infty, y \rightarrow 0$