MAT334-2018F > Quiz-1

Q1: TUT 0301


Victor Ivrii:
Describe the locus of points $z$ satisfying the given equation.

Meng Wu:
Let $$z=x+iy,\text{where} \space x,y \in \mathbb{R}.$$Given equation becomes:
Since,$$|x+iy-1|=\sqrt{(x-1)^2+y^2} \\ |x+iy+1|=\sqrt{(x+1)^2+y^2}$$
Hence, we have$$\require{cancel}\begin{align}\bigg(\sqrt{(x-1)^2+y^2}\bigg)^2&=\bigg(\sqrt{(x+1)^2+y^2}\bigg)^2+6 \\(x-1)^2+y^2&=(x+1)^2+y^2+6 \\ \cancel{x^2}-2x+\cancel{y^2}&=\cancel{x^2}+2x+\cancel{y^2}+6\\-4x&=6\\x&=-\frac{3}{2}\end{align}$$
Therefore, the locus of points $z$ are the straight line(vertical line) $x=-\frac{3}{2}.$

Meng Wu:
Just notice, I posted the answer before the 18:00 you mentioned. Is this gonna be an issue? Just wondering.


[0] Message Index

Go to full version