MAT334-2018F > Quiz-2

Q2 TUT 5101


Victor Ivrii:
Find the limit of each function at the given point $z_0$, or explain
why it does not exist.
f(z)=\frac{z^3-8i}{z+2i},\quad z\ne 2i, \qquad\text{at   } z_0=2i.

Yatong Yu:
f(z) = z³+(2i)³i/z+2i
      = (z+2i)(z²-2iz+(2i)²)/z+2i
limz->2i f(z)=limz->2i z²-2iz-4
                  = -4+4-4

Practically  unreadable despite all insane html "mathematics".
$$\begin{aligned}f(z) &= \frac{z^3+(2i)^3i}{z+2i}\\
      &= \frac{(z+2i)(z^2-2iz+(2i)^2)}{z+2i}\\
\lim_{z\to2i} f(z)&=\lim_{z\to2i}  z^2-2iz-4\\
                  &= -4+4-4\\


[0] Message Index

Go to full version