$x'=\begin{bmatrix}-4 & 7 \\1 & -4 \end{bmatrix}x$
$\mathrm{Eigenvalue\:}:det\begin{bmatrix}-4-r & 7 \\1 & -4-r \end{bmatrix}=0$
$(-4-r)^2-7=0, then\ r = \sqrt{7}-4,\:-4-\sqrt{7}$
$\mathrm{Eigenvectors\:for\:}λ=\sqrt{7}-4:$
$\mathrm{Solve}(A-rI):\begin{bmatrix}-4 & 7 \\1 & -4 \end{bmatrix}-(\sqrt{7}-4)\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}=\begin{pmatrix}-\sqrt{7}&7\\ 1&-\sqrt{7}\end{pmatrix}$
$\mathrm{Reduce\:}\begin{pmatrix}-\sqrt{7}&7\\ 1&-\sqrt{7}\end{pmatrix}:\quad \begin{pmatrix}1&-\sqrt{7}\\ 0&0\end{pmatrix}$
$\mathrm{The\:system\:associated\:with\:the\:eigenvalue\:}λ=\sqrt{7}-4$
$\left(A-\left(\sqrt{7}-4\right)I\right)\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}1&-\sqrt{7}\\ 0&0\end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}0\\ 0\end{pmatrix}\\$
$\mathrm{This\:reduces\:to\:the\:equation}x-\sqrt{7}y=0,x=\sqrt{7}y\\$
$plug in and let y = 1$
$\begin{pmatrix}\sqrt{7}\\ 1\end{pmatrix}$
$\mathrm{Eigenvectors\:for\:}λ=-4-\sqrt{7}:$
$\mathrm{Solve\:}\:\left(A-\lambda\:I\right):\:\begin{pmatrix}-4&7\\ 1&-4\end{pmatrix}-\left(-4-\sqrt{7}\right)\begin{pmatrix}1&0\\ 0&1\end{pmatrix}=\begin{pmatrix}\sqrt{7}&7\\ 1&\sqrt{7}\end{pmatrix}$
$\mathrm{Reduce\:}\begin{pmatrix}\sqrt{7}&7\\ 1&\sqrt{7}\end{pmatrix}:\quad \begin{pmatrix}1&\sqrt{7}\\ 0&0\end{pmatrix}\\\mathrm{The\:system\:associated\:with\:the\:eigenvalue\:}λ=-4-\sqrt{7}$
$\left(A-\left(-4-\sqrt{7}\right)I\right)\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}1&\sqrt{7}\\ 0&0\end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}=\begin{pmatrix}0\\ 0\end{pmatrix}$
$\mathrm{This\:reduces\:to\:the\:equation}:x+\sqrt{7}y=0, x=-\sqrt{7}y$
$\mathrm{Plug\:into\:}\begin{pmatrix}x\\ y\end{pmatrix},\mathrm{Let\:}y=1, \begin{pmatrix}-\sqrt{7}\\ 1\end{pmatrix}$
$\mathrm{The\:eigenvectors\:for\:}\begin{pmatrix}-4&7\\ 1&-4\end{pmatrix}=\begin{pmatrix}\sqrt{7}\\ 1\end{pmatrix},\:\begin{pmatrix}-\sqrt{7}\\ 1\end{pmatrix}$
$x={c_1e^ \sqrt{7}t-4t}\begin{pmatrix}\sqrt{7}\\ 1\end{pmatrix}+{c_2e^ \-4t-\sqrt{7}t}\begin{pmatrix}-\sqrt{7}\\ 1\end{pmatrix}$