$\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}$
Calculate an improper integral
$$
I=\int_0^\infty \frac{\ln^2(x)\,dx}{(x^2+1)}.
$$
Hint: (a) Calculate
$$
J_{R,\varepsilon} = \int_{\Gamma_{R,\varepsilon}} f(z)\,dz, \qquad f(z):=\frac{\log^2(z)}{(z^2+1)}
$$
where we have chosen the branch of $\log(z)$ such that they are analytic on the upper half-plane $\{z\colon \Im z>0\}$ and is real-valued for $z=x>0$. $\Gamma_{R,\varepsilon}$ is the contour on the figure below:
(b) Prove that $\int_{\gamma_R} f(z)\,dz\to 0$ as $R\to \infty$ and $\int_{\gamma_\varepsilon} f(z)\,dz\to 0$ as $\varepsilon\to 0^+0$ where $\gamma_R$ and $\gamma_\varepsilon$ are large and small semi-circles on the picture. This will give you a value of
\begin{equation}
\int_{-\infty}^0 f(z)\,dz + \int_0^{\infty} f(z)\,dz.
\label{4-1}
\end{equation}
(c) Express both integrals using $I$.