### Author Topic: TT1-P3  (Read 3361 times)

#### Victor Ivrii

• Administrator
• Elder Member
• Posts: 2599
• Karma: 0
##### TT1-P3
« on: October 21, 2015, 08:49:38 PM »
Find  solution to
\begin{align}
&u_{tt}-4u_{xx}=0, && t>0, \ x>0,\label{eq-3-1}\\[2pt]
&u|_{t=0}=e^{-x}, && x>0,\label{eq-3-2}\\[2pt]
&u_t|_{t=0}=6e^{-x}, && x>0,\label{eq-3-3}\\[2pt]
&u|_{x=0}= e^{-2t}, &&t>0.\label{eq-3-4}
\end{align}

#### Zaihao Zhou

• Full Member
• Posts: 29
• Karma: 0
##### Re: TT1-P3
« Reply #1 on: October 21, 2015, 09:23:59 PM »
$$u(x,t) = \phi (x+2t) + \psi (x-2t)$$
where $\phi (x) = -e^{-x}$ and $\psi (x) = 2e^{-x}$ when $x > 2t$. When $0< x < 2t$, $\psi (x) = 2e^x$
So for $x > 2t$: $$u(x,t) = -e^{-x-2t} + 2e^{2t-x}$$
For $0 < x < 2t$: $$u(x,t) = -e^{-x-2t} + 2e^{x-2t}$$

#### Bruce Wu

• Sr. Member
• Posts: 57
• Karma: 0
##### Re: TT1-P3
« Reply #2 on: October 21, 2015, 09:50:24 PM »
I believe that for $0<x<2t$ the solution is actually \large
u(x,t)=e^{x-2t}-e^{-x-2t}+e^{-2t+x}
« Last Edit: October 21, 2015, 09:54:19 PM by Fei Fan Wu »

#### Zaihao Zhou

• Full Member
• Posts: 29
• Karma: 0
##### Re: TT1-P3
« Reply #3 on: October 21, 2015, 10:08:44 PM »
For $0 < x < 2t$:
$$\phi (2t) + \psi (-2t) = e^{-2t}$$
Let $x = -2t$
$$\phi (-x) + \psi (x) = e^{x}$$
$$\psi (x) = -\phi (-x) + e^{x}$$
Here $\phi(-x) = -e^x$. So
$$\psi (x) = e^x + e^{x} = 2e^x \ \ \ \ \ \ x < 0$$
$$u(x,t) = \phi (x+2t) + \psi (x-2t) = -e^{-x-2t} + 2e^{x-2t}$$

Please correct me if I'm wrong

#### Bruce Wu

• Sr. Member
• Posts: 57
• Karma: 0
##### Re: TT1-P3
« Reply #4 on: October 21, 2015, 10:23:52 PM »
Here we have an inhomogeneous Dirichlet boundary condition. Using http://www.math.toronto.edu/courses/apm346h1/20159/PDE-textbook/Chapter2/S2.6.html#mjx-eqn-eq-2.6.10 I obtained the solution I gave above

#### Bruce Wu

• Sr. Member
• Posts: 57
• Karma: 0
##### Re: TT1-P3
« Reply #5 on: October 21, 2015, 10:43:19 PM »
Ah, I see. Our expressions are actually equivalent. I have just forgotten to collect the $e^{x-2t}$ terms. My apologies