As promised, the typed up solution:
Characteristic Equation:
$r^2-5r+6=0$
$(r-2)(r-3) = 0$
Roots: 3 and 2
Homogeneous Equation: $y_{c}(t)=c_{1}e^{3t}+c_{2}e^{2t}$
Particular solutions:
First particular solution:
$4e^{t}$
$Y(t) = Ae^{t} = Y'(t) = Y''(t)$
$Ae^{t} - 5Ae^{t} + 6Ae^{t} = 4e^{t}$
$A - 5A + 6A = 4$
$A = 2$
Second particular solution:
$e^{2t}$
$Y(t) = Ate^{2t}$
$Y'(t) = Ae^{2t} + 2Ate^{2t}$
$Y''(t) = 2Ae^{2t} + 2Ae^{2t} + 4Ate^{2t} = 4Ae^{2t} + 4Ate^{2t}$
$4Ae^{2t} + 4Ate^{2t} - 5(Ae^{2t} + 2Ate^{2t}) + 6Ate^{2t} = e^{2t}$
$-Ae^{2t} = e^{2t}$
$A = -1$
General Solution:
$y(t)=c_{1}e^{3t} + c_{2}e^{2t} + 2e^{t} -te^{2t}$
Solving for a solution satisfying $y(0)=0, y'(0) = 0$
$y(0) = c_{1}+c_2 + 2 =0$
$y'(0) = 3c_1 + 2c_2 + 1 = 0$
$c_1 = 2, c_2 = -3$
Thus, $y(t)=2e^{3t} -3e^{2t} + 2e^{t} -te^{2t}$