Author Topic: FE-P6  (Read 10941 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
FE-P6
« on: April 11, 2018, 08:48:39 PM »
For the system of ODEs
\begin{equation*}
\left\{\begin{aligned}
&x'_t = -2xy\, , \\
&y'_t = x^2+y^2-1
\end{aligned}\right.
\end{equation*}

a. Linearize the system at
stationary points and sketch the phase portrait of this linear system.

b.  Find the equation of the form $H(x,y) = C$, satisfied by the trajectories of the nonlinear system.

c. Sketch the full phase portrait.

Tim Mengzhe Geng

  • Full Member
  • ***
  • Posts: 21
  • Karma: 6
    • View Profile
Re: FE-P6
« Reply #1 on: April 12, 2018, 12:41:28 AM »
For part(b), we have
\begin{equation}
    (x^2+y^2-1)dx+2xydy=0
\end{equation}
Note that
\begin{equation}
    M_y=N_x=2y
\end{equation}
The equation is exact.
By integration
\begin{equation}
    H=\frac{1}{3}x^3+xy^2-x+h^\prime(y)
\end{equation}
\begin{equation}
    h^\prime(y)=0
\end{equation}
We choose
\begin{equation}
    h(y)=0
\end{equation}
In this way,
\begin{equation}
    H(x,y)=\frac{1}{3}x^3+xy^2-x=C
\end{equation}
I will post solution to other parts later if no one else follows.
« Last Edit: April 12, 2018, 09:53:45 AM by Tim Mengzhe GENG »

Nikola Elez

  • Jr. Member
  • **
  • Posts: 10
  • Karma: 2
    • View Profile
Re: FE-P6
« Reply #2 on: April 12, 2018, 01:16:43 AM »
I have attached a phase portrait

Syed Hasnain

  • Full Member
  • ***
  • Posts: 18
  • Karma: 3
  • mat244h1s-winter2018
    • View Profile
Re: FE-P6
« Reply #3 on: April 12, 2018, 01:25:37 AM »
there is a small mistake..... in step 5 you have mentioned that h(y) = 0
it is notzero, it is a constant

Nikola Elez

  • Jr. Member
  • **
  • Posts: 10
  • Karma: 2
    • View Profile
Re: FE-P6
« Reply #4 on: April 12, 2018, 01:37:12 AM »
For part a)
Sorry if poor quality

Tim Mengzhe Geng

  • Full Member
  • ***
  • Posts: 21
  • Karma: 6
    • View Profile
Re: FE-P6
« Reply #5 on: April 12, 2018, 09:22:44 AM »
there is a small mistake..... in step 5 you have mentioned that h(y) = 0
it is notzero, it is a constant
Please note that at I state, I just choose $h(y)=0$ for simplification.

Tim Mengzhe Geng

  • Full Member
  • ***
  • Posts: 21
  • Karma: 6
    • View Profile
Re: FE-P6
« Reply #6 on: April 12, 2018, 09:51:12 AM »
For Part(a), Note that for stationary points, we should have
\begin{equation}
    x^2+y^2-1=0
\end{equation}
And at the same time
\begin{equation}
    -2xy=0
\end{equation}
Therefore there're totally four stationary points. They are
\begin{equation}
    (x,y)=(1,0), (-1,0), (0,1) or (0,-1).
\end{equation}
\begin{equation}
   J={
\left[\begin{array}{ccc}
2x & 2y \\
-2y & -2x
\end{array}
\right ]},
\end{equation}
At point (1,0),
\begin{equation}
   J[1,0]={
\left[\begin{array}{ccc}
2 & 0 \\
0 & -2
\end{array}
\right ]},
\end{equation}
At point (-1,0),
\begin{equation}
   J[-1,0]={
\left[\begin{array}{ccc}
-2 & 0 \\
0 & 2
\end{array}
\right ]},
\end{equation}
At point (0,1),
\begin{equation}
   J[0,1]={
\left[\begin{array}{ccc}
0 & 2 \\
-2 & 0
\end{array}
\right ]},
\end{equation}
At point (0,-1),
\begin{equation}
   J[0,-1]={
\left[\begin{array}{ccc}
0 & -2 \\
2 & 0
\end{array}
\right ]},
\end{equation}

Nikola Elez

  • Jr. Member
  • **
  • Posts: 10
  • Karma: 2
    • View Profile
Re: FE-P6
« Reply #7 on: April 12, 2018, 10:50:25 AM »
Ah I seem to have missed two points, thanks for adding the full solution Tim!

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
FE-P6 Comments
« Reply #8 on: April 19, 2018, 11:45:12 AM »
Observe that Hessian of $H(x,y)$ is
$$
\begin{pmatrix}
2x &2y\\
2y &2x
\end{pmatrix};
$$
compare with the  Jacobi matrix (Jacobian is its determinant). In this particular case (of exact system) sometimes it is called skew-Hessian.

I attach the Contour plot of $H(x,y)$; note that $(-1,0)$ is the local maximum and $(1,0)$ is the local minimum, while $(0,\pm 1)$ are two saddle points
« Last Edit: April 19, 2018, 11:47:06 AM by Victor Ivrii »