First find the solution to the homogeneous equation.
$r^2 + 2r + 1 = 0 \\ $
$(r + 1)^2 = 0 \\ $
$r = -1, -1 \\ $
The solution to the homogeneous equation is
$z = c_1e^{-x} + c_2xe^{-x} $
Use the method of variation of parameters
let $z_p = u_1e^{-x} + u_2xe^{-x}$
\begin{gather}
u_1'e^{-x} + u_2'xe^{-x} = 0,\label{eq-1} \\
-u_1'e^{-x} + u_2'(e^{-x}-xe^{-x}) = e^{-x}\ln x \label{eq-2} \\
\end{gather}
Add equation (\ref{eq-1}) and (\ref{eq-2}) together,
$u_2'e^{-x} = e^{-x}\ln x \\$
$u_2' = \ln x$
$u_2 = x\ln x - x $
From equation 1,
$u_1' = -xu_2'$
$u_1' = -x\ln x$
$u_1 = x^2/4 - x^2\ln x/2$
$z_p = x^2e^{-x}/4 - x^2e^{-x}\ln x/2 + x^2e^{-x}\ln x - x^2e^{-x} \\ $
$z_p = -3x^2e^{-x}/4 + x^2e^{-x}\ln x/2 $
The solution is $z = c_1e^{-x} + c_2xe^{-x} -3x^2e^{-x}/4 + x^2e^{-x}\ln x/2$
When x = 1, z = -2
$ -2 = c_1e^{-1} + c_2e^{-1} - (3/4)e^{-1} \\$
$ -2e + 3/4 = c_1 + c_2$
let $c_1 = -2e$ and $c_2 = 3/4$
The solution satisfying z(1) = -2 is
$z = -2e^{1-x} + 3xe^{-x}/4 -3x^2e^{-x}/4 + \frac{1}{2}x^2e^{-x}\ln x$