MAT244-2014F > MT

MT Problem 4

**Victor Ivrii**:

Find Wronskian $\ W(y_1,y_2,y_3)(x)\ $ of a fundamental set of solutions $\ y_1(x)\ ,\ y_2(x)\ ,\ y_3(x)\ $ without finding the $\ y_j(x)$ ($j=1,2,3$) and then the general solution of the ODE

\begin{equation*}

(2-t)y''' + (2t-3) y'' -t y' + y = 0\ ,\ t < 2\ .

\end{equation*}

Hint: $\ e^t\ $ solves the ODE.

**Tanyu Yang**:

am I right?

**Victor Ivrii**:

Yes. But it is too late: official solutions are in handouts

**Tanyu Yang**:

--- Quote from: Victor Ivrii on November 04, 2014, 06:17:53 AM ---Yes. But it is too late: official solutions are in handouts

--- End quote ---

Oops, I didn't know that lol.

**Li**:

but t <2, how can I get ln(t-2) ?

Navigation

[0] Message Index

[#] Next page

Go to full version